50,045 research outputs found

    Personalised Visual Art Recommendation by Learning Latent Semantic Representations

    Full text link
    In Recommender systems, data representation techniques play a great role as they have the power to entangle, hide and reveal explanatory factors embedded within datasets. Hence, they influence the quality of recommendations. Specifically, in Visual Art (VA) recommendations the complexity of the concepts embodied within paintings, makes the task of capturing semantics by machines far from trivial. In VA recommendation, prominent works commonly use manually curated metadata to drive recommendations. Recent works in this domain aim at leveraging visual features extracted using Deep Neural Networks (DNN). However, such data representation approaches are resource demanding and do not have a direct interpretation, hindering user acceptance. To address these limitations, we introduce an approach for Personalised Recommendation of Visual arts based on learning latent semantic representation of paintings. Specifically, we trained a Latent Dirichlet Allocation (LDA) model on textual descriptions of paintings. Our LDA model manages to successfully uncover non-obvious semantic relationships between paintings whilst being able to offer explainable recommendations. Experimental evaluations demonstrate that our method tends to perform better than exploiting visual features extracted using pre-trained Deep Neural Networks.Comment: Accepted at SMAP202

    Visual Concepts and Compositional Voting

    Get PDF
    It is very attractive to formulate vision in terms of pattern theory \cite{Mumford2010pattern}, where patterns are defined hierarchically by compositions of elementary building blocks. But applying pattern theory to real world images is currently less successful than discriminative methods such as deep networks. Deep networks, however, are black-boxes which are hard to interpret and can easily be fooled by adding occluding objects. It is natural to wonder whether by better understanding deep networks we can extract building blocks which can be used to develop pattern theoretic models. This motivates us to study the internal representations of a deep network using vehicle images from the PASCAL3D+ dataset. We use clustering algorithms to study the population activities of the features and extract a set of visual concepts which we show are visually tight and correspond to semantic parts of vehicles. To analyze this we annotate these vehicles by their semantic parts to create a new dataset, VehicleSemanticParts, and evaluate visual concepts as unsupervised part detectors. We show that visual concepts perform fairly well but are outperformed by supervised discriminative methods such as Support Vector Machines (SVM). We next give a more detailed analysis of visual concepts and how they relate to semantic parts. Following this, we use the visual concepts as building blocks for a simple pattern theoretical model, which we call compositional voting. In this model several visual concepts combine to detect semantic parts. We show that this approach is significantly better than discriminative methods like SVM and deep networks trained specifically for semantic part detection. Finally, we return to studying occlusion by creating an annotated dataset with occlusion, called VehicleOcclusion, and show that compositional voting outperforms even deep networks when the amount of occlusion becomes large.Comment: It is accepted by Annals of Mathematical Sciences and Application

    The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision

    Full text link
    We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu
    • …
    corecore