3 research outputs found

    Self-play Learning Strategies for Resource Assignment in Open-RAN Networks

    Full text link
    Open Radio Access Network (ORAN) is being developed with an aim to democratise access and lower the cost of future mobile data networks, supporting network services with various QoS requirements, such as massive IoT and URLLC. In ORAN, network functionality is dis-aggregated into remote units (RUs), distributed units (DUs) and central units (CUs), which allows flexible software on Commercial-Off-The-Shelf (COTS) deployments. Furthermore, the mapping of variable RU requirements to local mobile edge computing centres for future centralized processing would significantly reduce the power consumption in cellular networks. In this paper, we study the RU-DU resource assignment problem in an ORAN system, modelled as a 2D bin packing problem. A deep reinforcement learning-based self-play approach is proposed to achieve efficient RU-DU resource management, with AlphaGo Zero inspired neural Monte-Carlo Tree Search (MCTS). Experiments on representative 2D bin packing environment and real sites data show that the self-play learning strategy achieves intelligent RU-DU resource assignment for different network conditions

    First-Order Problem Solving through Neural MCTS based Reinforcement Learning

    Full text link
    The formal semantics of an interpreted first-order logic (FOL) statement can be given in Tarskian Semantics or a basically equivalent Game Semantics. The latter maps the statement and the interpretation into a two-player semantic game. Many combinatorial problems can be described using interpreted FOL statements and can be mapped into a semantic game. Therefore, learning to play a semantic game perfectly leads to the solution of a specific instance of a combinatorial problem. We adapt the AlphaZero algorithm so that it becomes better at learning to play semantic games that have different characteristics than Go and Chess. We propose a general framework, Persephone, to map the FOL description of a combinatorial problem to a semantic game so that it can be solved through a neural MCTS based reinforcement learning algorithm. Our goal for Persephone is to make it tabula-rasa, mapping a problem stated in interpreted FOL to a solution without human intervention

    (When) Is Truth-telling Favored in AI Debate?

    Full text link
    For some problems, humans may not be able to accurately judge the goodness of AI-proposed solutions. Irving et al. (2018) propose that in such cases, we may use a debate between two AI systems to amplify the problem-solving capabilities of a human judge. We introduce a mathematical framework that can model debates of this type and propose that the quality of debate designs should be measured by the accuracy of the most persuasive answer. We describe a simple instance of the debate framework called feature debate and analyze the degree to which such debates track the truth. We argue that despite being very simple, feature debates nonetheless capture many aspects of practical debates such as the incentives to confuse the judge or stall to prevent losing. We then outline how these models should be generalized to analyze a wider range of debate phenomena
    corecore