14 research outputs found

    Learning Reasoning Strategies in End-to-End Differentiable Proving

    Get PDF
    Attempts to render deep learning models interpretable, data-efficient, and robust have seen some success through hybridisation with rule-based systems, for example, in Neural Theorem Provers (NTPs). These neuro-symbolic models can induce interpretable rules and learn representations from data via back-propagation, while providing logical explanations for their predictions. However, they are restricted by their computational complexity, as they need to consider all possible proof paths for explaining a goal, thus rendering them unfit for large-scale applications. We present Conditional Theorem Provers (CTPs), an extension to NTPs that learns an optimal rule selection strategy via gradient-based optimisation. We show that CTPs are scalable and yield state-of-the-art results on the CLUTRR dataset, which tests systematic generalisation of neural models by learning to reason over smaller graphs and evaluating on larger ones. Finally, CTPs show better link prediction results on standard benchmarks in comparison with other neural-symbolic models, while being explainable. All source code and datasets are available online, at https://github.com/uclnlp/ctp.Comment: Proceedings of the 37th International Conference on Machine Learning (ICML 2020

    Complex Query Answering on Eventuality Knowledge Graph with Implicit Logical Constraints

    Full text link
    Querying incomplete knowledge graphs (KGs) using deep learning approaches can naturally leverage the reasoning and generalization ability to learn to infer better answers. Traditional neural complex query answering (CQA) approaches mostly work on entity-centric KGs. However, in the real world, we also need to make logical inferences about events, states, and activities (i.e., eventualities or situations) to push learning systems from System I to System II, as proposed by Yoshua Bengio. Querying logically from an EVentuality-centric KG (EVKG) can naturally provide references to such kind of intuitive and logical inference. Thus, in this paper, we propose a new framework to leverage neural methods to answer complex logical queries based on an EVKG, which can satisfy not only traditional first-order logic constraints but also implicit logical constraints over eventualities concerning their occurrences and orders. For instance, if we know that ``Food is bad'' happens before ``PersonX adds soy sauce,'' then ``PersonX adds soy sauce'' is unlikely to be the cause of ``Food is bad'' due to implicit temporal constraint. To facilitate consistent reasoning on EVKGs, we propose Complex Eventuality Query Answering (CEQA), a more rigorous definition of CQA that considers the implicit logical constraints governing the temporal order and occurrence of eventualities. In this manner, we propose to leverage theorem provers for constructing benchmark datasets to ensure the answers satisfy implicit logical constraints. We also propose a Memory-Enhanced Query Encoding (MEQE) approach to significantly improve the performance of state-of-the-art neural query encoders on the CEQA task

    On the Aggregation of Rules for Knowledge Graph Completion

    Full text link
    Rule learning approaches for knowledge graph completion are efficient, interpretable and competitive to purely neural models. The rule aggregation problem is concerned with finding one plausibility score for a candidate fact which was simultaneously predicted by multiple rules. Although the problem is ubiquitous, as data-driven rule learning can result in noisy and large rulesets, it is underrepresented in the literature and its theoretical foundations have not been studied before in this context. In this work, we demonstrate that existing aggregation approaches can be expressed as marginal inference operations over the predicting rules. In particular, we show that the common Max-aggregation strategy, which scores candidates based on the rule with the highest confidence, has a probabilistic interpretation. Finally, we propose an efficient and overlooked baseline which combines the previous strategies and is competitive to computationally more expensive approaches.Comment: KLR Workshop@ICML202

    Modular Design Patterns for Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases

    Full text link
    The unification of statistical (data-driven) and symbolic (knowledge-driven) methods is widely recognised as one of the key challenges of modern AI. Recent years have seen large number of publications on such hybrid neuro-symbolic AI systems. That rapidly growing literature is highly diverse and mostly empirical, and is lacking a unifying view of the large variety of these hybrid systems. In this paper we analyse a large body of recent literature and we propose a set of modular design patterns for such hybrid, neuro-symbolic systems. We are able to describe the architecture of a very large number of hybrid systems by composing only a small set of elementary patterns as building blocks. The main contributions of this paper are: 1) a taxonomically organised vocabulary to describe both processes and data structures used in hybrid systems; 2) a set of 15+ design patterns for hybrid AI systems, organised in a set of elementary patterns and a set of compositional patterns; 3) an application of these design patterns in two realistic use-cases for hybrid AI systems. Our patterns reveal similarities between systems that were not recognised until now. Finally, our design patterns extend and refine Kautz' earlier attempt at categorising neuro-symbolic architectures.Comment: 20 pages, 22 figures, accepted for publication in the International Journal of Applied Intelligenc

    On the aggregation of rules for knowledge graph completion

    Full text link
    Rule learning approaches for knowledge graph completion are efficient, interpretable and competitive to purely neural models. The rule aggregation problem is concerned with finding one plausibility score for a candidate fact which was simultaneously predicted by multiple rules. Although the problem is ubiquitous, as data-driven rule learning can result in noisy and large rule sets, it is underrepresented in the literature and its theoretical foundations have not been studied before in this context. In this work, we demonstrate that existing aggregation approaches can be expressed as marginal inference operations over the predicting rules. In particular, we show that the common Max-aggregation strategy, which scores candidates based on the rule with the highest confidence, has a probabilistic interpretation. Finally, we propose an efficient and overlooked baseline which combines the previous strategies and is competitive to computationally more expensive approaches
    corecore