852 research outputs found

    Coarse-to-Fine Annotation Enrichment for Semantic Segmentation Learning

    Full text link
    Rich high-quality annotated data is critical for semantic segmentation learning, yet acquiring dense and pixel-wise ground-truth is both labor- and time-consuming. Coarse annotations (e.g., scribbles, coarse polygons) offer an economical alternative, with which training phase could hardly generate satisfactory performance unfortunately. In order to generate high-quality annotated data with a low time cost for accurate segmentation, in this paper, we propose a novel annotation enrichment strategy, which expands existing coarse annotations of training data to a finer scale. Extensive experiments on the Cityscapes and PASCAL VOC 2012 benchmarks have shown that the neural networks trained with the enriched annotations from our framework yield a significant improvement over that trained with the original coarse labels. It is highly competitive to the performance obtained by using human annotated dense annotations. The proposed method also outperforms among other state-of-the-art weakly-supervised segmentation methods.Comment: CIKM 2018 International Conference on Information and Knowledge Managemen

    Harvesting Information from Captions for Weakly Supervised Semantic Segmentation

    Full text link
    Since acquiring pixel-wise annotations for training convolutional neural networks for semantic image segmentation is time-consuming, weakly supervised approaches that only require class tags have been proposed. In this work, we propose another form of supervision, namely image captions as they can be found on the Internet. These captions have two advantages. They do not require additional curation as it is the case for the clean class tags used by current weakly supervised approaches and they provide textual context for the classes present in an image. To leverage such textual context, we deploy a multi-modal network that learns a joint embedding of the visual representation of the image and the textual representation of the caption. The network estimates text activation maps (TAMs) for class names as well as compound concepts, i.e. combinations of nouns and their attributes. The TAMs of compound concepts describing classes of interest substantially improve the quality of the estimated class activation maps which are then used to train a network for semantic segmentation. We evaluate our method on the COCO dataset where it achieves state of the art results for weakly supervised image segmentation

    Budget-aware Semi-Supervised Semantic and Instance Segmentation

    Get PDF
    Methods that move towards less supervised scenarios are key for image segmentation, as dense labels demand significant human intervention. Generally, the annotation burden is mitigated by labeling datasets with weaker forms of supervision, e.g. image-level labels or bounding boxes. Another option are semi-supervised settings, that commonly leverage a few strong annotations and a huge number of unlabeled/weakly-labeled data. In this paper, we revisit semi-supervised segmentation schemes and narrow down significantly the annotation budget (in terms of total labeling time of the training set) compared to previous approaches. With a very simple pipeline, we demonstrate that at low annotation budgets, semi-supervised methods outperform by a wide margin weakly-supervised ones for both semantic and instance segmentation. Our approach also outperforms previous semi-supervised works at a much reduced labeling cost. We present results for the Pascal VOC benchmark and unify weakly and semi-supervised approaches by considering the total annotation budget, thus allowing a fairer comparison between methods.Comment: To appear in CVPR-W 2019 (DeepVision workshop

    FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference

    Full text link
    The main obstacle to weakly supervised semantic image segmentation is the difficulty of obtaining pixel-level information from coarse image-level annotations. Most methods based on image-level annotations use localization maps obtained from the classifier, but these only focus on the small discriminative parts of objects and do not capture precise boundaries. FickleNet explores diverse combinations of locations on feature maps created by generic deep neural networks. It selects hidden units randomly and then uses them to obtain activation scores for image classification. FickleNet implicitly learns the coherence of each location in the feature maps, resulting in a localization map which identifies both discriminative and other parts of objects. The ensemble effects are obtained from a single network by selecting random hidden unit pairs, which means that a variety of localization maps are generated from a single image. Our approach does not require any additional training steps and only adds a simple layer to a standard convolutional neural network; nevertheless it outperforms recent comparable techniques on the Pascal VOC 2012 benchmark in both weakly and semi-supervised settings.Comment: To appear in CVPR 201

    Affinity Attention Graph Neural Network for Weakly Supervised Semantic Segmentation

    Full text link
    Weakly supervised semantic segmentation is receiving great attention due to its low human annotation cost. In this paper, we aim to tackle bounding box supervised semantic segmentation, i.e., training accurate semantic segmentation models using bounding box annotations as supervision. To this end, we propose Affinity Attention Graph Neural Network (A2A^2GNN). Following previous practices, we first generate pseudo semantic-aware seeds, which are then formed into semantic graphs based on our newly proposed affinity Convolutional Neural Network (CNN). Then the built graphs are input to our A2A^2GNN, in which an affinity attention layer is designed to acquire the short- and long- distance information from soft graph edges to accurately propagate semantic labels from the confident seeds to the unlabeled pixels. However, to guarantee the precision of the seeds, we only adopt a limited number of confident pixel seed labels for A2A^2GNN, which may lead to insufficient supervision for training. To alleviate this issue, we further introduce a new loss function and a consistency-checking mechanism to leverage the bounding box constraint, so that more reliable guidance can be included for the model optimization. Experiments show that our approach achieves new state-of-the-art performances on Pascal VOC 2012 datasets (val: 76.5\%, test: 75.2\%). More importantly, our approach can be readily applied to bounding box supervised instance segmentation task or other weakly supervised semantic segmentation tasks, with state-of-the-art or comparable performance among almot all weakly supervised tasks on PASCAL VOC or COCO dataset. Our source code will be available at https://github.com/zbf1991/A2GNN.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TAPMI 2021
    corecore