369 research outputs found

    Generalized Video Anomaly Event Detection: Systematic Taxonomy and Comparison of Deep Models

    Full text link
    Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance systems, enabling the temporal or spatial identification of anomalous events within videos. While existing reviews predominantly concentrate on conventional unsupervised methods, they often overlook the emergence of weakly-supervised and fully-unsupervised approaches. To address this gap, this survey extends the conventional scope of VAD beyond unsupervised methods, encompassing a broader spectrum termed Generalized Video Anomaly Event Detection (GVAED). By skillfully incorporating recent advancements rooted in diverse assumptions and learning frameworks, this survey introduces an intuitive taxonomy that seamlessly navigates through unsupervised, weakly-supervised, supervised and fully-unsupervised VAD methodologies, elucidating the distinctions and interconnections within these research trajectories. In addition, this survey facilitates prospective researchers by assembling a compilation of research resources, including public datasets, available codebases, programming tools, and pertinent literature. Furthermore, this survey quantitatively assesses model performance, delves into research challenges and directions, and outlines potential avenues for future exploration.Comment: Accepted by ACM Computing Surveys. For more information, please see our project page: https://github.com/fudanyliu/GVAE

    Exploiting Spatial-temporal Correlations for Video Anomaly Detection

    Full text link
    Video anomaly detection (VAD) remains a challenging task in the pattern recognition community due to the ambiguity and diversity of abnormal events. Existing deep learning-based VAD methods usually leverage proxy tasks to learn the normal patterns and discriminate the instances that deviate from such patterns as abnormal. However, most of them do not take full advantage of spatial-temporal correlations among video frames, which is critical for understanding normal patterns. In this paper, we address unsupervised VAD by learning the evolution regularity of appearance and motion in the long and short-term and exploit the spatial-temporal correlations among consecutive frames in normal videos more adequately. Specifically, we proposed to utilize the spatiotemporal long short-term memory (ST-LSTM) to extract and memorize spatial appearances and temporal variations in a unified memory cell. In addition, inspired by the generative adversarial network, we introduce a discriminator to perform adversarial learning with the ST-LSTM to enhance the learning capability. Experimental results on standard benchmarks demonstrate the effectiveness of spatial-temporal correlations for unsupervised VAD. Our method achieves competitive performance compared to the state-of-the-art methods with AUCs of 96.7%, 87.8%, and 73.1% on the UCSD Ped2, CUHK Avenue, and ShanghaiTech, respectively.Comment: This paper is accepted at IEEE 26TH International Conference on Pattern Recognition (ICPR) 202

    Towards Explainable Visual Anomaly Detection

    Full text link
    Anomaly detection and localization of visual data, including images and videos, are of great significance in both machine learning academia and applied real-world scenarios. Despite the rapid development of visual anomaly detection techniques in recent years, the interpretations of these black-box models and reasonable explanations of why anomalies can be distinguished out are scarce. This paper provides the first survey concentrated on explainable visual anomaly detection methods. We first introduce the basic background of image-level anomaly detection and video-level anomaly detection, followed by the current explainable approaches for visual anomaly detection. Then, as the main content of this survey, a comprehensive and exhaustive literature review of explainable anomaly detection methods for both images and videos is presented. Finally, we discuss several promising future directions and open problems to explore on the explainability of visual anomaly detection

    Future Frame Prediction for Anomaly Detection -- A New Baseline

    Full text link
    Anomaly detection in videos refers to the identification of events that do not conform to expected behavior. However, almost all existing methods tackle the problem by minimizing the reconstruction errors of training data, which cannot guarantee a larger reconstruction error for an abnormal event. In this paper, we propose to tackle the anomaly detection problem within a video prediction framework. To the best of our knowledge, this is the first work that leverages the difference between a predicted future frame and its ground truth to detect an abnormal event. To predict a future frame with higher quality for normal events, other than the commonly used appearance (spatial) constraints on intensity and gradient, we also introduce a motion (temporal) constraint in video prediction by enforcing the optical flow between predicted frames and ground truth frames to be consistent, and this is the first work that introduces a temporal constraint into the video prediction task. Such spatial and motion constraints facilitate the future frame prediction for normal events, and consequently facilitate to identify those abnormal events that do not conform the expectation. Extensive experiments on both a toy dataset and some publicly available datasets validate the effectiveness of our method in terms of robustness to the uncertainty in normal events and the sensitivity to abnormal events.Comment: IEEE Conference on Computer Vision and Pattern Recognition 201

    Anomaly Detection in Aerial Videos with Transformers

    Get PDF
    Unmanned aerial vehicles (UAVs) are widely applied for purposes of inspection, search, and rescue operations by the virtue of low-cost, large-coverage, real-time, and high-resolution data acquisition capacities. Massive volumes of aerial videos are produced in these processes, in which normal events often account for an overwhelming proportion. It is extremely difficult to localize and extract abnormal events containing potentially valuable information from long video streams manually. Therefore, we are dedicated to developing anomaly detection methods to solve this issue. In this paper, we create a new dataset, named DroneAnomaly, for anomaly detection in aerial videos. This dataset provides 37 training video sequences and 22 testing video sequences from 7 different realistic scenes with various anomalous events. There are 87,488 color video frames (51,635 for training and 35,853 for testing) with the size of 640×640640 \times 640 at 30 frames per second. Based on this dataset, we evaluate existing methods and offer a benchmark for this task. Furthermore, we present a new baseline model, ANomaly Detection with Transformers (ANDT), which treats consecutive video frames as a sequence of tubelets, utilizes a Transformer encoder to learn feature representations from the sequence, and leverages a decoder to predict the next frame. Our network models normality in the training phase and identifies an event with unpredictable temporal dynamics as an anomaly in the test phase. Moreover, To comprehensively evaluate the performance of our proposed method, we use not only our Drone-Anomaly dataset but also another dataset. We will make our dataset and code publicly available. A demo video is available at https://youtu.be/ancczYryOBY. We make our dataset and code publicly available

    Latent Space Autoregression for Novelty Detection

    Get PDF
    Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts
    • …
    corecore