6 research outputs found

    Leveraging Node Attributes for Incomplete Relational Data

    Full text link
    Relational data are usually highly incomplete in practice, which inspires us to leverage side information to improve the performance of community detection and link prediction. This paper presents a Bayesian probabilistic approach that incorporates various kinds of node attributes encoded in binary form in relational models with Poisson likelihood. Our method works flexibly with both directed and undirected relational networks. The inference can be done by efficient Gibbs sampling which leverages sparsity of both networks and node attributes. Extensive experiments show that our models achieve the state-of-the-art link prediction results, especially with highly incomplete relational data.Comment: Appearing in ICML 201

    Parallel Prediction Method of Knowledge Proficiency Based on Bloom’s Cognitive Theory

    Get PDF
    Knowledge proficiency refers to the extent to which students master knowledge and reflects their cognitive status. To accurately assess knowledge proficiency, various pedagogical theories have emerged. Bloom’s cognitive theory, proposed in 1956 as one of the classic theories, follows the cognitive progression from foundational to advanced levels, categorizing cognition into multiple tiers including “knowing”, “understanding”, and “application”, thereby constructing a hierarchical cognitive structure. This theory is predominantly employed to frame the design of teaching objectives and guide the implementation of teaching activities. Additionally, due to the large number of students in real-world online education systems, the time required to calculate knowledge proficiency is significantly high and unacceptable. To ensure the applicability of this method in large-scale systems, there is a substantial demand for the design of a parallel prediction model to assess knowledge proficiency. The research in this paper is grounded in Bloom’s Cognitive theory, and a Bloom Cognitive Diagnosis Parallel Model (BloomCDM) for calculating knowledge proficiency is designed based on this theory. The model is founded on the concept of matrix decomposition. In the theoretical modeling phase, hierarchical and inter-hierarchical assumptions are initially established, leading to the abstraction of the mathematical model. Subsequently, subject features are mapped onto the three-tier cognitive space of “knowing”, “understanding”, and “applying” to derive the posterior distribution of the target parameters. Upon determining the objective function of the model, both student and topic characteristic parameters are computed to ascertain students’ knowledge proficiency. During the modeling process, in order to formalize the mathematical expressions of “understanding” and “application”, the notions of “knowledge group” and “higher-order knowledge group” are introduced, along with a parallel method for identifying the structure of higher-order knowledge groups. Finally, the experiments in this paper validate that the model can accurately diagnose students’ knowledge proficiency, affirming the scientific and meaningful integration of Bloom’s cognitive hierarchy in knowledge proficiency assessment

    Hierarchical Semantic Community Detection in Information Networks: A Complete Information Graph Approach

    Get PDF
    In order to detect the hierarchical semantic community which is helpful to discover the true organization of information network,we propose a complete information graph approach. In this method, we first use complete information graphs including semantic edges and link edges to represent information networks. Then we define semantic modularity as an objective function, a measure that can express not only the tightness of links, but also the consistency of content. Next, we improve Lovain\u27s algorithm and propose simLV algorithm to detect communities on the complete information graph. This recursive algorithm itself can discover semantic communities of different sizes in the process of execution. Experiment results show the hierarchical community detected by the simLV algorithm performs better than the Louvain in measuring the consistency of semantic content for our approach takes into account the content attributes of nodes, which are neglected by many other methods. It can detect more meaningful community structures with consistent content and tight structure in information networks such as social networks, citation networks, web networks, etc., which is helpful to the application of information dissemination analysis, topic detection, public opinion detection, etc

    Learning nonparametric relational models by conjugately incorporating node information in a network

    Full text link
    © 2013 IEEE. Relational model learning is useful for numerous practical applications. Many algorithms have been proposed in recent years to tackle this important yet challenging problem. Existing algorithms utilize only binary directional link data to recover hidden network structures. However, there exists far richer and more meaningful information in other parts of a network which one can (and should) exploit. The attributes associated with each node, for instance, contain crucial information to help practitioners understand the underlying relationships in a network. For this reason, in this paper, we propose two models and their solutions, namely the node-information involved mixed-membership model and the node-information involved latent-feature model, in an effort to systematically incorporate additional node information. To effectively achieve this aim, node information is used to generate individual sticks of a stick-breaking process. In this way, not only can we avoid the need to prespecify the number of communities beforehand, the algorithm also encourages that nodes exhibiting similar information have a higher chance of assigning the same community membership. Substantial efforts have been made toward achieving the appropriateness and efficiency of these models, including the use of conjugate priors. We evaluate our framework and its inference algorithms using real-world data sets, which show the generality and effectiveness of our models in capturing implicit network structures

    Learning Nonparametric Relational Models by Conjugately Incorporating Node Information in a Network

    No full text
    corecore