8,258 research outputs found

    A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images

    Full text link
    Semantic segmentation is the pixel-wise labelling of an image. Since the problem is defined at the pixel level, determining image class labels only is not acceptable, but localising them at the original image pixel resolution is necessary. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high level and hierarchical image features; excessive numbers of deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmantation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analysed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localisation and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a brief summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.Comment: Updated with new studie

    Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers

    Full text link
    Scene parsing, or semantic segmentation, consists in labeling each pixel in an image with the category of the object it belongs to. It is a challenging task that involves the simultaneous detection, segmentation and recognition of all the objects in the image. The scene parsing method proposed here starts by computing a tree of segments from a graph of pixel dissimilarities. Simultaneously, a set of dense feature vectors is computed which encodes regions of multiple sizes centered on each pixel. The feature extractor is a multiscale convolutional network trained from raw pixels. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment will contain a single object. The convolutional network feature extractor is trained end-to-end from raw pixels, alleviating the need for engineered features. After training, the system is parameter free. The system yields record accuracies on the Stanford Background Dataset (8 classes), the Sift Flow Dataset (33 classes) and the Barcelona Dataset (170 classes) while being an order of magnitude faster than competing approaches, producing a 320 \times 240 image labeling in less than 1 second.Comment: 9 pages, 4 figures - Published in 29th International Conference on Machine Learning (ICML 2012), Jun 2012, Edinburgh, United Kingdo

    Recurrent Scene Parsing with Perspective Understanding in the Loop

    Full text link
    Objects may appear at arbitrary scales in perspective images of a scene, posing a challenge for recognition systems that process images at a fixed resolution. We propose a depth-aware gating module that adaptively selects the pooling field size in a convolutional network architecture according to the object scale (inversely proportional to the depth) so that small details are preserved for distant objects while larger receptive fields are used for those nearby. The depth gating signal is provided by stereo disparity or estimated directly from monocular input. We integrate this depth-aware gating into a recurrent convolutional neural network to perform semantic segmentation. Our recurrent module iteratively refines the segmentation results, leveraging the depth and semantic predictions from the previous iterations. Through extensive experiments on four popular large-scale RGB-D datasets, we demonstrate this approach achieves competitive semantic segmentation performance with a model which is substantially more compact. We carry out extensive analysis of this architecture including variants that operate on monocular RGB but use depth as side-information during training, unsupervised gating as a generic attentional mechanism, and multi-resolution gating. We find that gated pooling for joint semantic segmentation and depth yields state-of-the-art results for quantitative monocular depth estimation

    Distance to Center of Mass Encoding for Instance Segmentation

    Full text link
    The instance segmentation can be considered an extension of the object detection problem where bounding boxes are replaced by object contours. Strictly speaking the problem requires to identify each pixel instance and class independently of the artifice used for this mean. The advantage of instance segmentation over the usual object detection lies in the precise delineation of objects improving object localization. Additionally, object contours allow the evaluation of partial occlusion with basic image processing algorithms. This work approaches the instance segmentation problem as an annotation problem and presents a novel technique to encode and decode ground truth annotations. We propose a mathematical representation of instances that any deep semantic segmentation model can learn and generalize. Each individual instance is represented by a center of mass and a field of vectors pointing to it. This encoding technique has been denominated Distance to Center of Mass Encoding (DCME)
    • …
    corecore