3,304,187 research outputs found
Learning Deep Structured Models
Many problems in real-world applications involve predicting several random
variables which are statistically related. Markov random fields (MRFs) are a
great mathematical tool to encode such relationships. The goal of this paper is
to combine MRFs with deep learning algorithms to estimate complex
representations while taking into account the dependencies between the output
random variables. Towards this goal, we propose a training algorithm that is
able to learn structured models jointly with deep features that form the MRF
potentials. Our approach is efficient as it blends learning and inference and
makes use of GPU acceleration. We demonstrate the effectiveness of our
algorithm in the tasks of predicting words from noisy images, as well as
multi-class classification of Flickr photographs. We show that joint learning
of the deep features and the MRF parameters results in significant performance
gains.Comment: 11 pages including referenc
Learning Action Models: Qualitative Approach
In dynamic epistemic logic, actions are described using action models. In
this paper we introduce a framework for studying learnability of action models
from observations. We present first results concerning propositional action
models. First we check two basic learnability criteria: finite identifiability
(conclusively inferring the appropriate action model in finite time) and
identifiability in the limit (inconclusive convergence to the right action
model). We show that deterministic actions are finitely identifiable, while
non-deterministic actions require more learning power-they are identifiable in
the limit. We then move on to a particular learning method, which proceeds via
restriction of a space of events within a learning-specific action model. This
way of learning closely resembles the well-known update method from dynamic
epistemic logic. We introduce several different learning methods suited for
finite identifiability of particular types of deterministic actions.Comment: 18 pages, accepted for LORI-V: The Fifth International Conference on
Logic, Rationality and Interaction, October 28-31, 2015, National Taiwan
University, Taipei, Taiwa
Structured learning of assignment models for neuron reconstruction to minimize topological errors
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Structured learning provides a powerful framework for empirical risk minimization on the predictions of
structured models. It allows end-to-end learning of model parameters to minimize an application specific loss function. This framework is particularly well suited for discrete optimization models that are used for neuron reconstruction from anisotropic electron microscopy (EM) volumes. However, current methods are still learning unary potentials by training a classifier that is agnostic about the model it is used in. We believe the reason for that lies in the difficulties of (1) finding a representative training sample, and (2) designing an application specific loss function that captures the quality of a proposed solution. In this paper, we show how to find a representative training sample from human generated ground truth, and propose a loss function that is suitable to minimize topological errors in the reconstruction. We compare different training methods on two challenging EM-datasets. Our structured learning approach shows consistently higher reconstruction accuracy than other current learning methods.Peer ReviewedPostprint (author's final draft
Recommended from our members
Models for Learning (Mod4L) Final Report: Representing Learning Designs
The Mod4L Models of Practice project is part of the JISC-funded Design for Learning Programme. It ran from 1 May – 31 December 2006. The philosophy underlying the project was that a general split is evident in the e-learning community between development of e-learning tools, services and standards, and research into how teachers can use these most effectively, and is impeding uptake of new tools and methods by teachers. To help overcome this barrier and bridge the gap, a need is felt for practitioner-focused resources which describe a range of learning designs and offer guidance on how these may be chosen and applied, how they can support effective practice in design for learning, and how they can support the development of effective tools, standards and systems with a learning design capability (see, for example, Griffiths and Blat 2005, JISC 2006). Practice models, it was suggested, were such a resource.
The aim of the project was to: develop a range of practice models that could be used by practitioners in real life contexts and have a high impact on improving teaching and learning practice.
We worked with two definitions of practice models. Practice models are:
1. generic approaches to the structuring and orchestration of learning activities. They express elements of pedagogic principle and allow practitioners to make informed choices (JISC 2006)
However, however effective a learning design may be, it can only be shared with others through a representation. The issue of representation of learning designs is, then, central to the concept of sharing and reuse at the heart of JISC’s Design for Learning programme. Thus practice models should be both representations of effective practice, and effective representations of practice. Hence we arrived at the project working definition of practice models as:
2. Common, but decontextualised, learning designs that are represented in a way that is usable by practitioners (teachers, managers, etc).(Mod4L working definition, Falconer & Littlejohn 2006).
A learning design is defined as the outcome of the process of designing, planning and orchestrating learning activities as part of a learning session or programme (JISC 2006).
Practice models have many potential uses: they describe a range of learning designs that are found to be effective, and offer guidance on their use; they support sharing, reuse and adaptation of learning designs by teachers, and also the development of tools, standards and systems for planning, editing and running the designs.
The project took a practitioner-centred approach, working in close collaboration with a focus group of 12 teachers recruited across a range of disciplines and from both FE and HE. Focus group members are listed in Appendix 1. Information was gathered from the focus group through two face to face workshops, and through their contributions to discussions on the project wiki. This was supplemented by an activity at a JISC pedagogy experts meeting in October 2006, and a part workshop at ALT-C in September 2006. The project interim report of August 2006 contained the outcomes of the first workshop (Falconer and Littlejohn, 2006).
The current report refines the discussion of issues of representing learning designs for sharing and reuse evidenced in the interim report and highlights problems with the concept of practice models (section 2), characterises the requirements teachers have of effective representations (section 3), evaluates a number of types of representation against these requirements (section 4), explores the more technically focused role of sequencing representations and controlled vocabularies (sections 5 & 6), documents some generic learning designs (section 8.2) and suggests ways forward for bridging the gap between teachers and developers (section 2.6).
All quotations are taken from the Mod4L wiki unless otherwise stated
- …
