2 research outputs found

    Characterization of Hemodynamic Signal by Learning Multi-View Relationships

    Full text link
    Multi-view data are increasingly prevalent in practice. It is often relevant to analyze the relationships between pairs of views by multi-view component analysis techniques such as Canonical Correlation Analysis (CCA). However, data may easily exhibit nonlinear relations, which CCA cannot reveal. We aim to investigate the usefulness of nonlinear multi-view relations to characterize multi-view data in an explainable manner. To address this challenge, we propose a method to characterize globally nonlinear multi-view relationships as a mixture of linear relationships. A clustering method, it identifies partitions of observations that exhibit the same relationships and learns those relationships simultaneously. It defines cluster variables by multi-view rather than spatial relationships, unlike almost all other clustering methods. Furthermore, we introduce a supervised classification method that builds on our clustering method by employing multi-view relationships as discriminative factors. The value of these methods resides in their capability to find useful structure in the data that single-view or current multi-view methods may struggle to find. We demonstrate the potential utility of the proposed approach using an application in clinical informatics to detect and characterize slow bleeding in patients whose central venous pressure (CVP) is monitored at the bedside. Presently, CVP is considered an insensitive measure of a subject's intravascular volume status or its change. However, we reason that features of CVP during inspiration and expiration should be informative in early identification of emerging changes of patient status. We empirically show how the proposed method can help discover and analyze multiple-to-multiple correlations, which could be nonlinear or vary throughout the population, by finding explainable structure of operational interest to practitioners

    Detecting Patterns of Physiological Response to Hemodynamic Stress via Unsupervised Deep Learning

    Full text link
    Monitoring physiological responses to hemodynamic stress can help in determining appropriate treatment and ensuring good patient outcomes. Physicians' intuition suggests that the human body has a number of physiological response patterns to hemorrhage which escalate as blood loss continues, however the exact etiology and phenotypes of such responses are not well known or understood only at a coarse level. Although previous research has shown that machine learning models can perform well in hemorrhage detection and survival prediction, it is unclear whether machine learning could help to identify and characterize the underlying physiological responses in raw vital sign data. We approach this problem by first transforming the high-dimensional vital sign time series into a tractable, lower-dimensional latent space using a dilated, causal convolutional encoder model trained purely unsupervised. Second, we identify informative clusters in the embeddings. By analyzing the clusters of latent embeddings and visualizing them over time, we hypothesize that the clusters correspond to the physiological response patterns that match physicians' intuition. Furthermore, we attempt to evaluate the latent embeddings using a variety of methods, such as predicting the cluster labels using explainable features.Comment: Machine Learning for Health (ML4H) at NeurIPS 2019 - Extended Abstrac
    corecore