417,205 research outputs found

    Learning Sparse Graphon Mean Field Games

    Full text link
    Although the field of multi-agent reinforcement learning (MARL) has made considerable progress in the last years, solving systems with a large number of agents remains a hard challenge. Graphon mean field games (GMFGs) enable the scalable analysis of MARL problems that are otherwise intractable. By the mathematical structure of graphons, this approach is limited to dense graphs which are insufficient to describe many real-world networks such as power law graphs. Our paper introduces a novel formulation of GMFGs, called LPGMFGs, which leverages the graph theoretical concept of LpL^p graphons and provides a machine learning tool to efficiently and accurately approximate solutions for sparse network problems. This especially includes power law networks which are empirically observed in various application areas and cannot be captured by standard graphons. We derive theoretical existence and convergence guarantees and give empirical examples that demonstrate the accuracy of our learning approach for systems with many agents. Furthermore, we extend the Online Mirror Descent (OMD) learning algorithm to our setup to accelerate learning speed, empirically show its capabilities, and conduct a theoretical analysis using the novel concept of smoothed step graphons. In general, we provide a scalable, mathematically well-founded machine learning approach to a large class of otherwise intractable problems of great relevance in numerous research fields.Comment: accepted for publication at the International Conference on Artificial Intelligence and Statistics (AISTATS) 2023; code available at: https://github.com/ChrFabian/Learning_sparse_GMFG

    Fitted Q-Learning in Mean-field Games

    Full text link
    In the literature, existence of equilibria for discrete-time mean field games has been in general established via Kakutani's Fixed Point Theorem. However, this fixed point theorem does not entail any iterative scheme for computing equilibria. In this paper, we first propose a Q-iteration algorithm to compute equilibria for mean-field games with known model using Banach Fixed Point Theorem. Then, we generalize this algorithm to model-free setting using fitted Q-iteration algorithm and establish the probabilistic convergence of the proposed iteration. Then, using the output of this learning algorithm, we construct an approximate Nash equilibrium for finite-agent stochastic game with mean-field interaction between agents.Comment: 22 page

    A General Framework for Learning Mean-Field Games

    Full text link
    This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision-making in stochastic games with a large population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and demonstrates that naively combining reinforcement learning with the fixed-point approach in classical MFGs yields unstable algorithms. It then proposes value-based and policy-based reinforcement learning algorithms (GMF-V and GMF-P, respectively) with smoothed policies, with analysis of their convergence properties and computational complexities. Experiments on an equilibrium product pricing problem demonstrate that GMF-V-Q and GMF-P-TRPO, two specific instantiations of GMF-V and GMF-P, respectively, with Q-learning and TRPO, are both efficient and robust in the GMFG setting. Moreover, their performance is superior in convergence speed, accuracy, and stability when compared with existing algorithms for multi-agent reinforcement learning in the NN-player setting.Comment: 43 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1901.0958

    Reinforcement Learning Algorithm for Mixed Mean Field Control Games

    Full text link
    We present a new combined \textit{mean field control game} (MFCG) problem which can be interpreted as a competitive game between collaborating groups and its solution as a Nash equilibrium between groups. Players coordinate their strategies within each group. An example is a modification of the classical trader's problem. Groups of traders maximize their wealth. They face cost for their transactions, for their own terminal positions, and for the average holding within their group. The asset price is impacted by the trades of all agents. We propose a three-timescale reinforcement learning algorithm to approximate the solution of such MFCG problems. We test the algorithm on benchmark linear-quadratic specifications for which we provide analytic solutions
    corecore