175,614 research outputs found

    Low-Dimensional State and Action Representation Learning with MDP Homomorphism Metrics

    Get PDF
    Deep Reinforcement Learning has shown its ability in solving complicated problems directly from high-dimensional observations. However, in end-to-end settings, Reinforcement Learning algorithms are not sample-efficient and requires long training times and quantities of data. In this work, we proposed a framework for sample-efficient Reinforcement Learning that take advantage of state and action representations to transform a high-dimensional problem into a low-dimensional one. Moreover, we seek to find the optimal policy mapping latent states to latent actions. Because now the policy is learned on abstract representations, we enforce, using auxiliary loss functions, the lifting of such policy to the original problem domain. Results show that the novel framework can efficiently learn low-dimensional and interpretable state and action representations and the optimal latent policy

    Error Metrics for Learning Reliable Manifolds from Streaming Data

    Full text link
    Spectral dimensionality reduction is frequently used to identify low-dimensional structure in high-dimensional data. However, learning manifolds, especially from the streaming data, is computationally and memory expensive. In this paper, we argue that a stable manifold can be learned using only a fraction of the stream, and the remaining stream can be mapped to the manifold in a significantly less costly manner. Identifying the transition point at which the manifold is stable is the key step. We present error metrics that allow us to identify the transition point for a given stream by quantitatively assessing the quality of a manifold learned using Isomap. We further propose an efficient mapping algorithm, called S-Isomap, that can be used to map new samples onto the stable manifold. We describe experiments on a variety of data sets that show that the proposed approach is computationally efficient without sacrificing accuracy

    Coordinated Local Metric Learning

    Get PDF
    International audienceMahalanobis metric learning amounts to learning a linear data projection, after which the L2 metric is used to compute distances. To allow more flexible metrics, not restricted to linear projections, local metric learning techniques have been developed. Most of these methods partition the data space using clustering, and for each cluster a separate metric is learned. Using local metrics, however, it is not clear how to measure distances between data points assigned to different clusters. In this paper we propose to embed the local metrics in a global low-dimensional representation, in which the L2 metric can be used. With each cluster we associate a linear mapping that projects the data to the global representation. This global representation directly allows computing distances between points regardless to which local cluster they belong. Moreover, it also enables data visualization in a single view, and the use of L2 based efficient retrieval methods. Experiments on the Labeled Faces in the Wild dataset show that our approach improves over previous global and local metric learning approaches

    A Kernel Perspective on Behavioural Metrics for Markov Decision Processes

    Full text link
    Behavioural metrics have been shown to be an effective mechanism for constructing representations in reinforcement learning. We present a novel perspective on behavioural metrics for Markov decision processes via the use of positive definite kernels. We leverage this new perspective to define a new metric that is provably equivalent to the recently introduced MICo distance (Castro et al., 2021). The kernel perspective further enables us to provide new theoretical results, which has so far eluded prior work. These include bounding value function differences by means of our metric, and the demonstration that our metric can be provably embedded into a finite-dimensional Euclidean space with low distortion error. These are two crucial properties when using behavioural metrics for reinforcement learning representations. We complement our theory with strong empirical results that demonstrate the effectiveness of these methods in practice.Comment: Published in TML

    Mosquito Detection with Neural Networks: The Buzz of Deep Learning

    Full text link
    Many real-world time-series analysis problems are characterised by scarce data. Solutions typically rely on hand-crafted features extracted from the time or frequency domain allied with classification or regression engines which condition on this (often low-dimensional) feature vector. The huge advances enjoyed by many application domains in recent years have been fuelled by the use of deep learning architectures trained on large data sets. This paper presents an application of deep learning for acoustic event detection in a challenging, data-scarce, real-world problem. Our candidate challenge is to accurately detect the presence of a mosquito from its acoustic signature. We develop convolutional neural networks (CNNs) operating on wavelet transformations of audio recordings. Furthermore, we interrogate the network's predictive power by visualising statistics of network-excitatory samples. These visualisations offer a deep insight into the relative informativeness of components in the detection problem. We include comparisons with conventional classifiers, conditioned on both hand-tuned and generic features, to stress the strength of automatic deep feature learning. Detection is achieved with performance metrics significantly surpassing those of existing algorithmic methods, as well as marginally exceeding those attained by individual human experts.Comment: For data and software related to this paper, see http://humbug.ac.uk/kiskin2017/. Submitted as a conference paper to ECML 201
    • …
    corecore