32 research outputs found

    Learning Lightweight Lane Detection CNNs by Self Attention Distillation

    Full text link
    Training deep models for lane detection is challenging due to the very subtle and sparse supervisory signals inherent in lane annotations. Without learning from much richer context, these models often fail in challenging scenarios, e.g., severe occlusion, ambiguous lanes, and poor lighting conditions. In this paper, we present a novel knowledge distillation approach, i.e., Self Attention Distillation (SAD), which allows a model to learn from itself and gains substantial improvement without any additional supervision or labels. Specifically, we observe that attention maps extracted from a model trained to a reasonable level would encode rich contextual information. The valuable contextual information can be used as a form of 'free' supervision for further representation learning through performing topdown and layer-wise attention distillation within the network itself. SAD can be easily incorporated in any feedforward convolutional neural networks (CNN) and does not increase the inference time. We validate SAD on three popular lane detection benchmarks (TuSimple, CULane and BDD100K) using lightweight models such as ENet, ResNet-18 and ResNet-34. The lightest model, ENet-SAD, performs comparatively or even surpasses existing algorithms. Notably, ENet-SAD has 20 x fewer parameters and runs 10 x faster compared to the state-of-the-art SCNN, while still achieving compelling performance in all benchmarks. Our code is available at https://github.com/cardwing/Codes-for-Lane-Detection.Comment: 9 pages, 8 figures; This paper is accepted by ICCV 2019; Our code is available at https://github.com/cardwing/Codes-for-Lane-Detectio

    Lane Detection in Low-light Conditions Using an Efficient Data Enhancement : Light Conditions Style Transfer

    Full text link
    Nowadays, deep learning techniques are widely used for lane detection, but application in low-light conditions remains a challenge until this day. Although multi-task learning and contextual-information-based methods have been proposed to solve the problem, they either require additional manual annotations or introduce extra inference overhead respectively. In this paper, we propose a style-transfer-based data enhancement method, which uses Generative Adversarial Networks (GANs) to generate images in low-light conditions, that increases the environmental adaptability of the lane detector. Our solution consists of three parts: the proposed SIM-CycleGAN, light conditions style transfer and lane detection network. It does not require additional manual annotations nor extra inference overhead. We validated our methods on the lane detection benchmark CULane using ERFNet. Empirically, lane detection model trained using our method demonstrated adaptability in low-light conditions and robustness in complex scenarios. Our code for this paper will be publicly available.Comment: Accepted by IV 202

    A light-weight method to foster the (Grad)CAM interpretability and explainability of classification networks

    Full text link
    We consider a light-weight method which allows to improve the explainability of localized classification networks. The method considers (Grad)CAM maps during the training process by modification of the training loss and does not require additional structural elements. It is demonstrated that the (Grad)CAM interpretability, as measured by several indicators, can be improved in this way. Since the method shall be applicable on embedded systems and on standard deeper architectures, it essentially takes advantage of second order derivatives during the training and does not require additional model layers.Comment: 2020 10th International Conference on Advanced Computer Information Technologie

    Heatmap-based Vanishing Point boosts Lane Detection

    Full text link
    Vision-based lane detection (LD) is a key part of autonomous driving technology, and it is also a challenging problem. As one of the important constraints of scene composition, vanishing point (VP) may provide a useful clue for lane detection. In this paper, we proposed a new multi-task fusion network architecture for high-precision lane detection. Firstly, the ERFNet was used as the backbone to extract the hierarchical features of the road image. Then, the lanes were detected using image segmentation. Finally, combining the output of lane detection and the hierarchical features extracted by the backbone, the lane VP was predicted using heatmap regression. The proposed fusion strategy was tested using the public CULane dataset. The experimental results suggest that the lane detection accuracy of our method outperforms those of state-of-the-art (SOTA) methods.Comment: 5 pages, 3 figures, submitted to IEEE journal, under revie

    Real-time Multi-target Path Prediction and Planning for Autonomous Driving aided by FCN

    Full text link
    Real-time multi-target path planning is a key issue in the field of autonomous driving. Although multiple paths can be generated in real-time with polynomial curves, the generated paths are not flexible enough to deal with complex road scenes such as S-shaped road and unstructured scenes such as parking lots. Search and sampling-based methods, such as A* and RRT and their derived methods, are flexible in generating paths for these complex road environments. However, the existing algorithms require significant time to plan to multiple targets, which greatly limits their application in autonomous driving. In this paper, a real-time path planning method for multi-targets is proposed. We train a fully convolutional neural network (FCN) to predict a path region for the target at first. By taking the predicted path region as soft constraints, the A* algorithm is then applied to search the exact path to the target. Experiments show that FCN can make multiple predictions in a very short time (50 times in 40ms), and the predicted path region effectively restrict the searching space for the following A* search. Therefore, the A* can search much faster so that the multi-target path planning can be achieved in real-time (3 targets in less than 100ms)

    Categorical Relation-Preserving Contrastive Knowledge Distillation for Medical Image Classification

    Full text link
    The amount of medical images for training deep classification models is typically very scarce, making these deep models prone to overfit the training data. Studies showed that knowledge distillation (KD), especially the mean-teacher framework which is more robust to perturbations, can help mitigate the over-fitting effect. However, directly transferring KD from computer vision to medical image classification yields inferior performance as medical images suffer from higher intra-class variance and class imbalance. To address these issues, we propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor. Specifically, we propose a novel Class-guided Contrastive Distillation (CCD) module to pull closer positive image pairs from the same class in the teacher and student models, while pushing apart negative image pairs from different classes. With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance. Besides, we propose a Categorical Relation Preserving (CRP) loss to distill the teacher's relational knowledge in a robust and class-balanced manner. With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively. Extensive experiments on the HAM10000 and APTOS datasets demonstrate the superiority of the proposed CRCKD method

    3D-LaneNet+: Anchor Free Lane Detection using a Semi-Local Representation

    Full text link
    3D-LaneNet+ is a camera-based DNN method for anchor free 3D lane detection which is able to detect 3d lanes of any arbitrary topology such as splits, merges, as well as short and perpendicular lanes. We follow recently proposed 3D-LaneNet, and extend it to enable the detection of these previously unsupported lane topologies. Our output representation is an anchor free, semi-local tile representation that breaks down lanes into simple lane segments whose parameters can be learnt. In addition we learn, per lane instance, feature embedding that reasons for the global connectivity of locally detected segments to form full 3d lanes. This combination allows 3D-LaneNet+ to avoid using lane anchors, non-maximum suppression, and lane model fitting as in the original 3D-LaneNet. We demonstrate the efficacy of 3D-LaneNet+ using both synthetic and real world data. Results show significant improvement relative to the original 3D-LaneNet that can be attributed to better generalization to complex lane topologies, curvatures and surface geometries.Comment: arXiv admin note: substantial text overlap with arXiv:2003.0525

    Model-Agnostic Defense for Lane Detection against Adversarial Attack

    Full text link
    Susceptibility of neural networks to adversarial attack prompts serious safety concerns for lane detection efforts, a domain where such models have been widely applied. Recent work on adversarial road patches have successfully induced perception of lane lines with arbitrary form, presenting an avenue for rogue control of vehicle behavior. In this paper, we propose a modular lane verification system that can catch such threats before the autonomous driving system is misled while remaining agnostic to the particular lane detection model. Our experiments show that implementing the system with a simple convolutional neural network (CNN) can defend against a wide gamut of attacks on lane detection models. With a 10% impact to inference time, we can detect 96% of bounded non-adaptive attacks, 90% of bounded adaptive attacks, and 98% of patch attacks while preserving accurate identification at least 95% of true lanes, indicating that our proposed verification system is effective at mitigating lane detection security risks with minimal overhead.Comment: 6 pages, 6 figures, 3 tables. Part of AutoSec 2021 proceeding

    A system of vision sensor based deep neural networks for complex driving scene analysis in support of crash risk assessment and prevention

    Full text link
    To assist human drivers and autonomous vehicles in assessing crash risks, driving scene analysis using dash cameras on vehicles and deep learning algorithms is of paramount importance. Although these technologies are increasingly available, driving scene analysis for this purpose still remains a challenge. This is mainly due to the lack of annotated large image datasets for analyzing crash risk indicators and crash likelihood, and the lack of an effective method to extract lots of required information from complex driving scenes. To fill the gap, this paper develops a scene analysis system. The Multi-Net of the system includes two multi-task neural networks that perform scene classification to provide four labels for each scene. The DeepLab v3 and YOLO v3 are combined by the system to detect and locate risky pedestrians and the nearest vehicles. All identified information can provide the situational awareness to autonomous vehicles or human drivers for identifying crash risks from the surrounding traffic. To address the scarcity of annotated image datasets for studying traffic crashes, two completely new datasets have been developed by this paper and made available to the public, which were proved to be effective in training the proposed deep neural networks. The paper further evaluates the performance of the Multi-Net and the efficiency of the developed system. Comprehensive scene analysis is further illustrated with representative examples. Results demonstrate the effectiveness of the developed system and datasets for driving scene analysis, and their supportiveness for crash risk assessment and crash prevention.Comment: 11 Pages, 8 Figures, Presented in TRB conferenc

    PolyLaneNet: Lane Estimation via Deep Polynomial Regression

    Full text link
    One of the main factors that contributed to the large advances in autonomous driving is the advent of deep learning. For safer self-driving vehicles, one of the problems that has yet to be solved completely is lane detection. Since methods for this task have to work in real-time (+30 FPS), they not only have to be effective (i.e., have high accuracy) but they also have to be efficient (i.e., fast). In this work, we present a novel method for lane detection that uses as input an image from a forward-looking camera mounted in the vehicle and outputs polynomials representing each lane marking in the image, via deep polynomial regression. The proposed method is shown to be competitive with existing state-of-the-art methods in the TuSimple dataset while maintaining its efficiency (115 FPS). Additionally, extensive qualitative results on two additional public datasets are presented, alongside with limitations in the evaluation metrics used by recent works for lane detection. Finally, we provide source code and trained models that allow others to replicate all the results shown in this paper, which is surprisingly rare in state-of-the-art lane detection methods. The full source code and pretrained models are available at https://github.com/lucastabelini/PolyLaneNet.Comment: Accepted to ICPR 202
    corecore