45,465 research outputs found

    A Kernel Classification Framework for Metric Learning

    Full text link
    Learning a distance metric from the given training samples plays a crucial role in many machine learning tasks, and various models and optimization algorithms have been proposed in the past decade. In this paper, we generalize several state-of-the-art metric learning methods, such as large margin nearest neighbor (LMNN) and information theoretic metric learning (ITML), into a kernel classification framework. First, doublets and triplets are constructed from the training samples, and a family of degree-2 polynomial kernel functions are proposed for pairs of doublets or triplets. Then, a kernel classification framework is established, which can not only generalize many popular metric learning methods such as LMNN and ITML, but also suggest new metric learning methods, which can be efficiently implemented, interestingly, by using the standard support vector machine (SVM) solvers. Two novel metric learning methods, namely doublet-SVM and triplet-SVM, are then developed under the proposed framework. Experimental results show that doublet-SVM and triplet-SVM achieve competitive classification accuracies with state-of-the-art metric learning methods such as ITML and LMNN but with significantly less training time.Comment: 11 pages, 7 figure

    The return of AdaBoost.MH: multi-class Hamming trees

    Full text link
    Within the framework of AdaBoost.MH, we propose to train vector-valued decision trees to optimize the multi-class edge without reducing the multi-class problem to KK binary one-against-all classifications. The key element of the method is a vector-valued decision stump, factorized into an input-independent vector of length KK and label-independent scalar classifier. At inner tree nodes, the label-dependent vector is discarded and the binary classifier can be used for partitioning the input space into two regions. The algorithm retains the conceptual elegance, power, and computational efficiency of binary AdaBoost. In experiments it is on par with support vector machines and with the best existing multi-class boosting algorithm AOSOLogitBoost, and it is significantly better than other known implementations of AdaBoost.MH

    DCSVM: Fast Multi-class Classification using Support Vector Machines

    Full text link
    We present DCSVM, an efficient algorithm for multi-class classification using Support Vector Machines. DCSVM is a divide and conquer algorithm which relies on data sparsity in high dimensional space and performs a smart partitioning of the whole training data set into disjoint subsets that are easily separable. A single prediction performed between two partitions eliminates at once one or more classes in one partition, leaving only a reduced number of candidate classes for subsequent steps. The algorithm continues recursively, reducing the number of classes at each step, until a final binary decision is made between the last two classes left in the competition. In the best case scenario, our algorithm makes a final decision between kk classes in O(logk)O(\log k) decision steps and in the worst case scenario DCSVM makes a final decision in k1k-1 steps, which is not worse than the existent techniques

    Learning Discriminative Features Via Weights-biased Softmax Loss

    Full text link
    Loss functions play a key role in training superior deep neural networks. In convolutional neural networks (CNNs), the popular cross entropy loss together with softmax does not explicitly guarantee minimization of intra-class variance or maximization of inter-class variance. In the early studies, there is no theoretical analysis and experiments explicitly indicating how to choose the number of units in fully connected layer. To help CNNs learn features more fast and discriminative, there are two contributions in this paper. First, we determine the minimum number of units in FC layer by rigorous theoretical analysis and extensive experiment, which reduces CNNs' parameter memory and training time. Second, we propose a negative-focused weights-biased softmax (W-Softmax) loss to help CNNs learn more discriminative features. The proposed W-Softmax loss not only theoretically formulates the intraclass compactness and inter-class separability, but also can avoid overfitting by enlarging decision margins. Moreover, the size of decision margins can be flexibly controlled by adjusting a hyperparameter α\alpha. Extensive experimental results on several benchmark datasets show the superiority of W-Softmax in image classification tasks

    Active Multi-Kernel Domain Adaptation for Hyperspectral Image Classification

    Full text link
    Recent years have witnessed the quick progress of the hyperspectral images (HSI) classification. Most of existing studies either heavily rely on the expensive label information using the supervised learning or can hardly exploit the discriminative information borrowed from related domains. To address this issues, in this paper we show a novel framework addressing HSI classification based on the domain adaptation (DA) with active learning (AL). The main idea of our method is to retrain the multi-kernel classifier by utilizing the available labeled samples from source domain, and adding minimum number of the most informative samples with active queries in the target domain. The proposed method adaptively combines multiple kernels, forming a DA classifier that minimizes the bias between the source and target domains. Further equipped with the nested actively updating process, it sequentially expands the training set and gradually converges to a satisfying level of classification performance. We study this active adaptation framework with the Margin Sampling (MS) strategy in the HSI classification task. Our experimental results on two popular HSI datasets demonstrate its effectiveness

    A Large-Scale Exploration of Effective Global Features for a Joint Entity Detection and Tracking Model

    Full text link
    Entity detection and tracking (EDT) is the task of identifying textual mentions of real-world entities in documents, extending the named entity detection and coreference resolution task by considering mentions other than names (pronouns, definite descriptions, etc.). Like NE tagging and coreference resolution, most solutions to the EDT task separate out the mention detection aspect from the coreference aspect. By doing so, these solutions are limited to using only local features for learning. In contrast, by modeling both aspects of the EDT task simultaneously, we are able to learn using highly complex, non-local features. We develop a new joint EDT model and explore the utility of many features, demonstrating their effectiveness on this task

    Multithreshold Entropy Linear Classifier

    Full text link
    Linear classifiers separate the data with a hyperplane. In this paper we focus on the novel method of construction of multithreshold linear classifier, which separates the data with multiple parallel hyperplanes. Proposed model is based on the information theory concepts -- namely Renyi's quadratic entropy and Cauchy-Schwarz divergence. We begin with some general properties, including data scale invariance. Then we prove that our method is a multithreshold large margin classifier, which shows the analogy to the SVM, while in the same time works with much broader class of hypotheses. What is also interesting, proposed method is aimed at the maximization of the balanced quality measure (such as Matthew's Correlation Coefficient) as opposed to very common maximization of the accuracy. This feature comes directly from the optimization problem statement and is further confirmed by the experiments on the UCI datasets. It appears, that our Multithreshold Entropy Linear Classifier (MELC) obtaines similar or higher scores than the ones given by SVM on both synthetic and real data. We show how proposed approach can be benefitial for the cheminformatics in the task of ligands activity prediction, where despite better classification results, MELC gives some additional insight into the data structure (classes of underrepresented chemical compunds)

    A Fast and Robust TSVM for Pattern Classification

    Full text link
    Twin support vector machine~(TSVM) is a powerful learning algorithm by solving a pair of smaller SVM-type problems. However, there are still some specific issues such as low efficiency and weak robustness when it is faced with some real applications. In this paper, we propose a Fast and Robust TSVM~(FR-TSVM) to deal with the above issues. In order to alleviate the effects of noisy inputs, we propose an effective fuzzy membership function and reformulate the TSVMs such that different input instances can make different contributions to the learning of the separating hyperplanes. To further speed up the training procedure, we develop an efficient coordinate descent algorithm with shirking to solve the involved a pair of quadratic programming problems (QPPs). Moreover, theoretical foundations of the proposed model are analyzed in details. The experimental results on several artificial and benchmark datasets indicate that the FR-TSVM not only obtains a fast learning speed but also shows a robust classification performance. Code has been made available at: https://github.com/gaobb/FR-TSVM.Comment: 14 pages, Under Revie

    Adaptive Image Stream Classification via Convolutional Neural Network with Intrinsic Similarity Metrics

    Full text link
    When performing data classification over a stream of continuously occurring instances, a key challenge is to develop an open-world classifier that anticipates instances from an unknown class. Studies addressing this problem, typically called novel class detection, have considered classification methods that reactively adapt to such changes along the stream. Importantly, they rely on the property of cohesion and separation among instances in feature space. Instances belonging to the same class are assumed to be closer to each other (cohesion) than those belonging to different classes (separation). Unfortunately, this assumption may not have large support when dealing with high dimensional data such as images. In this paper, we address this key challenge by proposing a semisupervised multi-task learning framework called CSIM which aims to intrinsically search for a latent space suitable for detecting labels of instances from both known and unknown classes. Particularly, we utilize a convolution neural network layer that aids in the learning of a latent feature space suitable for novel class detection. We empirically measure the performance of CSIM over multiple realworld image datasets and demonstrate its superiority by comparing its performance with existing semi-supervised methods.Comment: 10 pages; KDD'18 Deep Learning Day, August 2018, London, U

    Native Language Identification using Stacked Generalization

    Full text link
    Ensemble methods using multiple classifiers have proven to be the most successful approach for the task of Native Language Identification (NLI), achieving the current state of the art. However, a systematic examination of ensemble methods for NLI has yet to be conducted. Additionally, deeper ensemble architectures such as classifier stacking have not been closely evaluated. We present a set of experiments using three ensemble-based models, testing each with multiple configurations and algorithms. This includes a rigorous application of meta-classification models for NLI, achieving state-of-the-art results on three datasets from different languages. We also present the first use of statistical significance testing for comparing NLI systems, showing that our results are significantly better than the previous state of the art. We make available a collection of test set predictions to facilitate future statistical tests
    corecore