2 research outputs found

    Learning Generative Models using Denoising Density Estimators

    Full text link
    Learning probabilistic models that can estimate the density of a given set of samples, and generate samples from that density, is one of the fundamental challenges in unsupervised machine learning. We introduce a new generative model based on denoising density estimators (DDEs), which are scalar functions parameterized by neural networks, that are efficiently trained to represent kernel density estimators of the data. Leveraging DDEs, our main contribution is a novel technique to obtain generative models by minimizing the KL-divergence directly. We prove that our algorithm for obtaining generative models is guaranteed to converge to the correct solution. Our approach does not require specific network architecture as in normalizing flows, nor use ordinary differential equation solvers as in continuous normalizing flows. Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.Comment: Code and models available at https://drive.google.com/file/d/1EzKRxnFG1Hd8g6Ggvt-jvKkgpDDwK2b

    AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

    Full text link
    Entropy is ubiquitous in machine learning, but it is in general intractable to compute the entropy of the distribution of an arbitrary continuous random variable. In this paper, we propose the amortized residual denoising autoencoder (AR-DAE) to approximate the gradient of the log density function, which can be used to estimate the gradient of entropy. Amortization allows us to significantly reduce the error of the gradient approximator by approaching asymptotic optimality of a regular DAE, in which case the estimation is in theory unbiased. We conduct theoretical and experimental analyses on the approximation error of the proposed method, as well as extensive studies on heuristics to ensure its robustness. Finally, using the proposed gradient approximator to estimate the gradient of entropy, we demonstrate state-of-the-art performance on density estimation with variational autoencoders and continuous control with soft actor-critic.Comment: accepted in ICML 202
    corecore