10 research outputs found

    Feature representations useful for predicting image memorability

    Full text link
    Predicting image memorability has attracted interest in various fields. Consequently, prediction accuracy with convolutional neural network (CNN) models has been approaching the empirical upper bound estimated based on human consistency. However, identifying which feature representations embedded in CNN models are responsible for such high prediction accuracy of memorability remains an open question. To tackle this problem, this study sought to identify memorability-related feature representations in CNN models using brain similarity. Specifically, memorability prediction accuracy and brain similarity were examined and assessed by Brain-Score across 16,860 layers in 64 CNN models pretrained for object recognition. A clear tendency was shown in this comprehensive analysis that layers with high memorability prediction accuracy had higher brain similarity with the inferior temporal (IT) cortex, which is the highest stage in the ventral visual pathway. Furthermore, fine-tuning the 64 CNN models revealed that brain similarity with the IT cortex at the penultimate layer was positively correlated with memorability prediction accuracy. This analysis also showed that the best fine-tuned model provided accuracy comparable to the state-of-the-art CNN models developed specifically for memorability prediction. Overall, this study's results indicated that the CNN models' great success in predicting memorability relies on feature representation acquisition similar to the IT cortex. This study advanced our understanding of feature representations and its use for predicting image memorability

    V1T: large-scale mouse V1 response prediction using a Vision Transformer

    Full text link
    Accurate predictive models of the visual cortex neural response to natural visual stimuli remain a challenge in computational neuroscience. In this work, we introduce V1T, a novel Vision Transformer based architecture that learns a shared visual and behavioral representation across animals. We evaluate our model on two large datasets recorded from mouse primary visual cortex and outperform previous convolution-based models by more than 12.7% in prediction performance. Moreover, we show that the self-attention weights learned by the Transformer correlate with the population receptive fields. Our model thus sets a new benchmark for neural response prediction and can be used jointly with behavioral and neural recordings to reveal meaningful characteristic features of the visual cortex.Comment: updated references and added link to code repository; add analysis on generalization and visualize aRF

    Toward Learning Human-aligned Cross-domain Robust Models by Countering Misaligned Features

    Full text link
    Machine learning has demonstrated remarkable prediction accuracy over i.i.d data, but the accuracy often drops when tested with data from another distribution. In this paper, we aim to offer another view of this problem in a perspective assuming the reason behind this accuracy drop is the reliance of models on the features that are not aligned well with how a data annotator considers similar across these two datasets. We refer to these features as misaligned features. We extend the conventional generalization error bound to a new one for this setup with the knowledge of how the misaligned features are associated with the label. Our analysis offers a set of techniques for this problem, and these techniques are naturally linked to many previous methods in robust machine learning literature. We also compared the empirical strength of these methods demonstrated the performance when these previous techniques are combined, with an implementation available at https://github.com/OoDBag/WRComment: to appear at UAI 202

    Exploring fMRI RDMs: enhancing model robustness through neurobiological data

    Get PDF
    Artificial neural networks (ANNs) are sensitive to perturbations and adversarial attacks. One hypothesized solution to adversarial robustness is to align manifolds in the embedded space of neural networks with biologically grounded manifolds. Recent state-of-the-art works that emphasize learning robust neural representations, rather than optimizing for a specific target task like classification, support the idea that researchers should investigate this hypothesis. While works have shown that fine-tuning ANNs to coincide with biological vision does increase robustness to both perturbations and adversarial attacks, these works have relied on proprietary datasets—the lack of publicly available biological benchmarks makes it difficult to evaluate the efficacy of these claims. Here, we deliver a curated dataset consisting of biological representations of images taken from two commonly used computer vision datasets, ImageNet and COCO, that can be easily integrated into model training and evaluation. Specifically, we take a large functional magnetic resonance imaging (fMRI) dataset (BOLD5000), preprocess it into representational dissimilarity matrices (RDMs), and establish an infrastructure that anyone can use to train models with biologically grounded representations. Using this infrastructure, we investigate the representations of several popular neural networks and find that as networks have been optimized for tasks, their correspondence with biological fidelity has decreased. Additionally, we use a previously unexplored graph-based technique, Fiedler partitioning, to showcase the viability of the biological data, and the potential to extend these analyses by extending RDMs into Laplacian matrices. Overall, our findings demonstrate the potential of utilizing our new biological benchmark to effectively enhance the robustness of models

    Selected Inductive Biases in Neural Networks To Generalize Beyond the Training Domain

    Get PDF
    Die künstlichen neuronalen Netze des computergesteuerten Sehens können mit den vielf\"altigen Fähigkeiten des menschlichen Sehens noch lange nicht mithalten. Im Gegensatz zum Menschen können künstliche neuronale Netze durch kaum wahrnehmbare Störungen durcheinandergebracht werden, es mangelt ihnen an Generalisierungsfähigkeiten über ihre Trainingsdaten hinaus und sie benötigen meist noch enorme Datenmengen für das Erlernen neuer Aufgaben. Somit sind auf neuronalen Netzen basierende Anwendungen häufig auf kleine Bereiche oder kontrollierte Umgebungen beschränkt und lassen sich schlecht auf andere Aufgaben übertragen. In dieser Dissertation, werden vier Veröffentlichungen besprochen, die sich mit diesen Einschränkungen auseinandersetzen und Algorithmen im Bereich des visuellen Repräsentationslernens weiterentwickeln. In der ersten Veröffentlichung befassen wir uns mit dem Erlernen der unabhängigen Faktoren, die zum Beispiel eine Szenerie beschreiben. Im Gegensatz zu vorherigen Arbeiten in diesem Forschungsfeld verwenden wir hierbei jedoch weniger künstliche, sondern natürlichere Datensätze. Dabei beobachten wir, dass die zeitlichen Änderungen von Szenerien beschreibenden, natürlichen Faktoren (z.B. die Positionen von Personen in einer Fußgängerzone) einer verallgemeinerten Laplace-Verteilung folgen. Wir nutzen die verallgemeinerte Laplace-Verteilung als schwaches Lernsignal, um neuronale Netze für mathematisch beweisbares Repräsentationslernen unabhängiger Faktoren zu trainieren. Wir erzielen in den disentanglement_lib Wettbewerbsdatensätzen vergleichbare oder bessere Ergebnisse als vorherige Arbeiten – dies gilt auch für die von uns beigesteuerten Datensätze, welche natürliche Faktoren beinhalten. Die zweite Veröffentlichung untersucht, ob verschiedene neuronale Netze bereits beobachtete, eine Szenerie beschreibende Faktoren generalisieren können. In den meisten bisherigen Generalisierungswettbewerben werden erst während der Testphase neue Störungsfaktoren hinzugefügt - wir hingegen garantieren, dass die für die Testphase relevanten Variationsfaktoren bereits während der Trainingsphase teilweise vorkommen. Wir stellen fest, dass die getesteten neuronalen Netze meist Schwierigkeiten haben, die beschreibenden Faktoren zu generalisieren. Anstatt die richtigen Werte der Faktoren zu bestimmen, neigen die Netze dazu, Werte in zuvor beobachteten Bereichen vorherzusagen. Dieses Verhalten ist bei allen untersuchten neuronalen Netzen recht ähnlich. Trotz ihrer begrenzten Generalisierungsfähigkeiten, können die Modelle jedoch modular sein: Obwohl sich einige Faktoren während der Trainingsphase in einem zuvor ungesehenen Wertebereich befinden, können andere Faktoren aus einem bereits bekannten Wertebereich größtenteils dennoch korrekt bestimmt werden. Die dritte Veröffentlichung präsentiert ein adversielles Trainingsverfahren für neuronale Netze. Das Verfahren ist inspiriert durch lokale Korrelationsstrukturen häufiger Bildartefakte, die z.B. durch Regen, Unschärfe oder Rauschen entstehen können. Im Klassifizierungswettbewerb ImageNet-C zeigen wir, dass mit unserer Methode trainierte Netzwerke weniger anfällig für häufige Störungen sind als einige, die mit bestehenden Methoden trainiert wurden. Schließlich stellt die vierte Veröffentlichung einen generativen Ansatz vor, der bestehende Ansätze gemäß mehrerer Robustheitsmetriken beim MNIST Ziffernklassifizierungswettbewerb übertrifft. Perzeptiv scheint unser generatives Modell im Vergleich zu früheren Ansätzen stärker auf das menschliche Sehen abgestimmt zu sein, da Bilder von Ziffern, die für unser generatives Modell mehrdeutig sind, auch für den Menschen mehrdeutig erscheinen können. Diese Arbeit liefert also Möglichkeiten zur Verbesserung der adversiellen Robustheit und der Störungstoleranz sowie Erweiterungen im Bereich des visuellen Repräsentationslernens. Somit nähern wir uns im Bereich des maschinellen Lernens weiter der Vielfalt menschlicher Fähigkeiten an.Artificial neural networks in computer vision have yet to approach the broad performance of human vision. Unlike humans, artificial networks can be derailed by almost imperceptible perturbations, lack strong generalization capabilities beyond the training data and still mostly require enormous amounts of data to learn novel tasks. Thus, current applications based on neural networks are often limited to a narrow range of controlled environments and do not transfer well across tasks. This thesis presents four publications that address these limitations and advance visual representation learning algorithms. In the first publication, we aim to push the field of disentangled representation learning towards more realistic settings. We observe that natural factors of variation describing scenes, e.g., the position of pedestrians, have temporally sparse transitions in videos. We leverage this sparseness as a weak form of learning signal to train neural networks for provable disentangled visual representation learning. We achieve competitive results on the disentanglement_lib benchmark datasets and our own contributed datasets, which include natural transitions. The second publication investigates whether various visual representation learning approaches generalize along partially observed factors of variation. In contrast to prior robustness benchmarks that add unseen types of perturbations during test time, we compose, interpolate, or extrapolate the factors observed during training. We find that the tested models mostly struggle to generalize to our proposed benchmark. Instead of predicting the correct factors, models tend to predict values in previously observed ranges. This behavior is quite common across models. Despite their limited out-of-distribution performances, the models can be fairly modular as, even though some factors are out-of-distribution, other in-distribution factors are still mostly inferred correctly. The third publication presents an adversarial noise training method for neural networks inspired by the local correlation structure of common corruptions caused by rain, blur, or noise. On the ImageNet-C classification benchmark, we show that networks trained with our method are less susceptible to common corruptions than those trained with existing methods. Finally, the fourth publication introduces a generative approach that outperforms existing approaches according to multiple robustness metrics on the MNIST digit classification benchmark. Perceptually, our generative model is more aligned with human vision compared to previous approaches, as images of digits at our model's decision boundary can also appear ambiguous to humans. In a nutshell, this work investigates ways of improving adversarial and corruption robustness, and disentanglement in visual representation learning algorithms. Thus, we alleviate some limitations in machine learning and narrow the gap towards human capabilities
    corecore