589 research outputs found

    Rethinking the Value of Network Pruning

    Full text link
    Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization.Comment: ICLR 2019. Significant revisions from the previous versio

    JavaScript Convolutional Neural Networks for Keyword Spotting in the Browser: An Experimental Analysis

    Full text link
    Used for simple commands recognition on devices from smart routers to mobile phones, keyword spotting systems are everywhere. Ubiquitous as well are web applications, which have grown in popularity and complexity over the last decade with significant improvements in usability under cross-platform conditions. However, despite their obvious advantage in natural language interaction, voice-enabled web applications are still far and few between. In this work, we attempt to bridge this gap by bringing keyword spotting capabilities directly into the browser. To our knowledge, we are the first to demonstrate a fully-functional implementation of convolutional neural networks in pure JavaScript that runs in any standards-compliant browser. We also apply network slimming, a model compression technique, to explore the accuracy-efficiency tradeoffs, reporting latency measurements on a range of devices and software. Overall, our robust, cross-device implementation for keyword spotting realizes a new paradigm for serving neural network applications, and one of our slim models reduces latency by 66% with a minimal decrease in accuracy of 4% from 94% to 90%.Comment: 5 pages, 3 figure

    DeepRebirth: Accelerating Deep Neural Network Execution on Mobile Devices

    Full text link
    Deploying deep neural networks on mobile devices is a challenging task. Current model compression methods such as matrix decomposition effectively reduce the deployed model size, but still cannot satisfy real-time processing requirement. This paper first discovers that the major obstacle is the excessive execution time of non-tensor layers such as pooling and normalization without tensor-like trainable parameters. This motivates us to design a novel acceleration framework: DeepRebirth through "slimming" existing consecutive and parallel non-tensor and tensor layers. The layer slimming is executed at different substructures: (a) streamline slimming by merging the consecutive non-tensor and tensor layer vertically; (b) branch slimming by merging non-tensor and tensor branches horizontally. The proposed optimization operations significantly accelerate the model execution and also greatly reduce the run-time memory cost since the slimmed model architecture contains less hidden layers. To maximally avoid accuracy loss, the parameters in new generated layers are learned with layer-wise fine-tuning based on both theoretical analysis and empirical verification. As observed in the experiment, DeepRebirth achieves more than 3x speed-up and 2.5x run-time memory saving on GoogLeNet with only 0.4% drop of top-5 accuracy on ImageNet. Furthermore, by combining with other model compression techniques, DeepRebirth offers an average of 65ms inference time on the CPU of Samsung Galaxy S6 with 86.5% top-5 accuracy, 14% faster than SqueezeNet which only has a top-5 accuracy of 80.5%.Comment: AAAI 201

    Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure

    Full text link
    The redundancy is widely recognized in Convolutional Neural Networks (CNNs), which enables to remove unimportant filters from convolutional layers so as to slim the network with acceptable performance drop. Inspired by the linear and combinational properties of convolution, we seek to make some filters increasingly close and eventually identical for network slimming. To this end, we propose Centripetal SGD (C-SGD), a novel optimization method, which can train several filters to collapse into a single point in the parameter hyperspace. When the training is completed, the removal of the identical filters can trim the network with NO performance loss, thus no finetuning is needed. By doing so, we have partly solved an open problem of constrained filter pruning on CNNs with complicated structure, where some layers must be pruned following others. Our experimental results on CIFAR-10 and ImageNet have justified the effectiveness of C-SGD-based filter pruning. Moreover, we have provided empirical evidences for the assumption that the redundancy in deep neural networks helps the convergence of training by showing that a redundant CNN trained using C-SGD outperforms a normally trained counterpart with the equivalent width.Comment: CVPR 201

    Creating Lightweight Object Detectors with Model Compression for Deployment on Edge Devices

    Full text link
    To achieve lightweight object detectors for deployment on the edge devices, an effective model compression pipeline is proposed in this paper. The compression pipeline consists of automatic channel pruning for the backbone, fixed channel deletion for the branch layers and knowledge distillation for the guidance learning. As results, the Resnet50-v1d is auto-pruned and fine-tuned on ImageNet to attain a compact base model as the backbone of object detector. Then, lightweight object detectors are implemented with proposed compression pipeline. For instance, the SSD-300 with model size=16.3MB, FLOPS=2.31G, and mAP=71.2 is created, revealing a better result than SSD-300-MobileNet.Comment: lightweight detector, automatic channel pruning, fixed channel deletion, knowledge distillatio

    AutoSlim: Towards One-Shot Architecture Search for Channel Numbers

    Full text link
    We study how to set channel numbers in a neural network to achieve better accuracy under constrained resources (e.g., FLOPs, latency, memory footprint or model size). A simple and one-shot solution, named AutoSlim, is presented. Instead of training many network samples and searching with reinforcement learning, we train a single slimmable network to approximate the network accuracy of different channel configurations. We then iteratively evaluate the trained slimmable model and greedily slim the layer with minimal accuracy drop. By this single pass, we can obtain the optimized channel configurations under different resource constraints. We present experiments with MobileNet v1, MobileNet v2, ResNet-50 and RL-searched MNasNet on ImageNet classification. We show significant improvements over their default channel configurations. We also achieve better accuracy than recent channel pruning methods and neural architecture search methods. Notably, by setting optimized channel numbers, our AutoSlim-MobileNet-v2 at 305M FLOPs achieves 74.2% top-1 accuracy, 2.4% better than default MobileNet-v2 (301M FLOPs), and even 0.2% better than RL-searched MNasNet (317M FLOPs). Our AutoSlim-ResNet-50 at 570M FLOPs, without depthwise convolutions, achieves 1.3% better accuracy than MobileNet-v1 (569M FLOPs). Code and models will be available at: https://github.com/JiahuiYu/slimmable_networksComment: tech repor

    C2S2: Cost-aware Channel Sparse Selection for Progressive Network Pruning

    Full text link
    This paper describes a channel-selection approach for simplifying deep neural networks. Specifically, we propose a new type of generic network layer, called pruning layer, to seamlessly augment a given pre-trained model for compression. Each pruning layer, comprising 1×11 \times 1 depth-wise kernels, is represented with a dual format: one is real-valued and the other is binary. The former enables a two-phase optimization process of network pruning to operate with an end-to-end differentiable network, and the latter yields the mask information for channel selection. Our method progressively performs the pruning task layer-wise, and achieves channel selection according to a sparsity criterion to favor pruning more channels. We also develop a cost-aware mechanism to prevent the compression from sacrificing the expected network performance. Our results for compressing several benchmark deep networks on image classification and semantic segmentation are comparable to those by state-of-the-art

    Dynamic Routing Networks

    Full text link
    The deployment of deep neural networks in real-world applications is mostly restricted by their high inference costs. Extensive efforts have been made to improve the accuracy with expert-designed or algorithm-searched architectures. However, the incremental improvement is typically achieved with increasingly more expensive models that only a small portion of input instances really need. Inference with a static architecture that processes all input instances via the same transformation would thus incur unnecessary computational costs. Therefore, customizing the model capacity in an instance-aware manner is much needed for higher inference efficiency. In this paper, we propose Dynamic Routing Networks (DRNets), which support efficient instance-aware inference by routing the input instance to only necessary transformation branches selected from a candidate set of branches for each connection between transformation nodes. The branch selection is dynamically determined via the corresponding branch importance weights, which are first generated from lightweight hypernetworks (RouterNets) and then recalibrated with Gumbel-Softmax before the selection. Extensive experiments show that DRNets can reduce a substantial amount of parameter size and FLOPs during inference with prediction performance comparable to state-of-the-art architectures.Comment: 10 pages, 3 figures, 3 table

    Dynamic Channel Pruning: Feature Boosting and Suppression

    Full text link
    Making deep convolutional neural networks more accurate typically comes at the cost of increased computational and memory resources. In this paper, we reduce this cost by exploiting the fact that the importance of features computed by convolutional layers is highly input-dependent, and propose feature boosting and suppression (FBS), a new method to predictively amplify salient convolutional channels and skip unimportant ones at run-time. FBS introduces small auxiliary connections to existing convolutional layers. In contrast to channel pruning methods which permanently remove channels, it preserves the full network structures and accelerates convolution by dynamically skipping unimportant input and output channels. FBS-augmented networks are trained with conventional stochastic gradient descent, making it readily available for many state-of-the-art CNNs. We compare FBS to a range of existing channel pruning and dynamic execution schemes and demonstrate large improvements on ImageNet classification. Experiments show that FBS can respectively provide 5×5\times and 2×2\times savings in compute on VGG-16 and ResNet-18, both with less than 0.6%0.6\% top-5 accuracy loss.Comment: 14 pages, 5 figures, 4 tables, published as a conference paper at ICLR 201

    Model Slicing for Supporting Complex Analytics with Elastic Inference Cost and Resource Constraints

    Full text link
    Deep learning models have been used to support analytics beyond simple aggregation, where deeper and wider models have been shown to yield great results. These models consume a huge amount of memory and computational operations. However, most of the large-scale industrial applications are often computational budget constrained. In practice, the peak workload of inference service could be 10x higher than the average cases, with the presence of unpredictable extreme cases. Lots of computational resources could be wasted during off-peak hours and the system may crash when the workload exceeds system capacity. How to support deep learning services with dynamic workload cost-efficiently remains a challenging problem. In this paper, we address the challenge with a general and novel training scheme called model slicing, which enables deep learning models to provide predictions within the prescribed computational resource budget dynamically. Model slicing could be viewed as an elastic computation solution without requiring more computational resources. Succinctly, each layer in the model is divided into groups of contiguous block of basic components (i.e. neurons in dense layers and channels in convolutional layers), and then partially ordered relation is introduced to these groups by enforcing that groups participated in each forward pass always starts from the first group to the dynamically-determined rightmost group. Trained by dynamically indexing the rightmost group with a single parameter slice rate, the network is engendered to build up group-wise and residual representation. Then during inference, a sub-model with fewer groups can be readily deployed for efficiency whose computation is roughly quadratic to the width controlled by the slice rate. Extensive experiments show that models trained with model slicing can effectively support on-demand workload with elastic inference cost.Comment: 14 pages, 8 figures. arXiv admin note: text overlap with arXiv:1706.02093 by other author
    corecore