6 research outputs found

    Binary Representation Learning for Large Scale Visual Data

    Get PDF
    The exponentially growing modern media created large amount of multimodal or multidomain visual data, which usually reside in high dimensional space. And it is crucial to provide not only effective but also efficient understanding of the data.In this dissertation, we focus on learning binary representation of visual dataset, whose primary use has been hash code for retrieval purpose. Simultaneously it serves as multifunctional feature that can also be used for various computer vision tasks. Essentially, this is achieved by discriminative learning that preserves the supervision information in the binary representation.By using deep networks such as convolutional neural networks (CNNs) as backbones, and effective binary embedding algorithm that is seamlessly integrated into the learning process, we achieve state-of-the art performance on several settings. First, we study the supervised binary representation learning problem by using label information directly instead of pairwise similarity or triplet loss. By considering images and associated textual information, we study the cross-modal representation learning. CNNs are used in both image and text embedding, and we are able to perform retrieval and prediction across these modalities. Furthermore, by utilizing unlabeled images from a different domain, we propose to use adversarial learning to connect these domains. Finally, we also consider progressive learning for more efficient learning and instance-level representation learning to provide finer granularity understanding. This dissertation demonstrates that binary representation is versatile and powerful under various circumstances with different tasks

    Predicting medication adherence using ensemble learning and deep learning models with large scale healthcare data

    Get PDF
    Clinical studies from WHO have demonstrated that only 50-70% of patients adhere properly to prescribed drug therapy. Such adherence failure can impact therapeutic efficacy for the patients in question and compromises data quality around the population-level efficacy of the drug for the indications targeted. In this study, we applied various ensemble learning and deep learning models to predict medication adherence among patients. Our contribution to this endeavour involves targeting the problem of adherence prediction for a particularly challenging class of patients who self-administer injectable medication at home. Our prediction pipeline, based on event history, comprises a connected sharps bin which aims to help patients better manage their condition and improve outcomes. In other words, the efficiency of interventions can be significantly improved by prioritizing the patients who are most likely to be non-adherent. The collected data comprising a rich event feature set may be exploited for the purposes of predicting the status of the next adherence state for individual patients. This paper reports on how this concept can be realized through an investigation using a wide range of ensemble learning and deep learning models on a real-world dataset collected from such a system. The dataset investigated comprises 342,174 historic injection disposal records collected over the course of more than 5 years. A comprehensive comparison of different models is given in this paper. Moreover, we demonstrate that the selected best performer, long short-term memory (LSTM), generalizes well by deploying it in a true future testing dataset. The proposed end-to-end pipeline is capable of predicting patient failure in adhering to their therapeutic regimen with 77.35% accuracy (Specificity: 78.28%, Sensitivity: 76.42%, Precision: 77.87%, F1 score: 0.7714, ROC AUC: 0.8390)

    Creating high-resolution 3D cranial implant geometry using deep learning techniques

    Get PDF
    Creating a personalized implant for cranioplasty can be costly and aesthetically challenging, particularly for comminuted fractures that affect a wide area. Despite significant advances in deep learning techniques for 2D image completion, generating a 3D shape inpainting remains challenging due to the higher dimensionality and computational demands for 3D skull models. Here, we present a practical deep-learning approach to generate implant geometry from defective 3D skull models created from CT scans. Our proposed 3D reconstruction system comprises two neural networks that produce high-quality implant models suitable for clinical use while reducing training time. The first network repairs low-resolution defective models, while the second network enhances the volumetric resolution of the repaired model. We have tested our method in simulations and real-life surgical practices, producing implants that fit naturally and precisely match defect boundaries, particularly for skull defects above the Frankfort horizontal plane
    corecore