190 research outputs found

    A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions

    Full text link
    Traditional recommendation systems are faced with two long-standing obstacles, namely, data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Over the last decade, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey paper, we first proposed a two-level taxonomy of cross-domain recommendation which classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field

    Explainable Neural Attention Recommender Systems

    Get PDF
    Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated suggestions irrelevant to many users. Furthermore, many systems have been recently expected to accompany their suggestions with corresponding reasoning. Users who receive unjustified recommendations they do not agree with are susceptible to stop using the system or ignore its suggestions. In this work we investigate the current trends in the field of recommender systems and focus on two rising areas, deep recommendation and explainable recommender systems. First we present Textual and Contextual Embedding-based Neural Recommender (TCENR), a model that mitigates the data sparsity problem in the area of point-of-interest (POI) recommendation. This method employs different types of deep neural networks to learn varied perspectives of the same user-location interaction, using textual reviews, geographical data and social networks

    Explainable Neural Attention Recommender Systems

    Get PDF
    Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated suggestions irrelevant to many users. Furthermore, many systems have been recently expected to accompany their suggestions with corresponding reasoning. Users who receive unjustified recommendations they do not agree with are susceptible to stop using the system or ignore its suggestions. In this work we investigate the current trends in the field of recommender systems and focus on two rising areas, deep recommendation and explainable recommender systems. First we present Textual and Contextual Embedding-based Neural Recommender (TCENR), a model that mitigates the data sparsity problem in the area of point-of-interest (POI) recommendation. This method employs different types of deep neural networks to learn varied perspectives of the same user-location interaction, using textual reviews, geographical data and social networks

    A Survey of Graph Neural Networks for Social Recommender Systems

    Full text link
    Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.Comment: GitHub repository with the curated list of papers: https://github.com/claws-lab/awesome-GNN-social-recsy
    • …
    corecore