461 research outputs found

    De-confounding Representation Learning for Counterfactual Inference on Continuous Treatment via Generative Adversarial Network

    Full text link
    Counterfactual inference for continuous rather than binary treatment variables is more common in real-world causal inference tasks. While there are already some sample reweighting methods based on Marginal Structural Model for eliminating the confounding bias, they generally focus on removing the treatment's linear dependence on confounders and rely on the accuracy of the assumed parametric models, which are usually unverifiable. In this paper, we propose a de-confounding representation learning (DRL) framework for counterfactual outcome estimation of continuous treatment by generating the representations of covariates disentangled with the treatment variables. The DRL is a non-parametric model that eliminates both linear and nonlinear dependence between treatment and covariates. Specifically, we train the correlations between the de-confounded representations and the treatment variables against the correlations between the covariate representations and the treatment variables to eliminate confounding bias. Further, a counterfactual inference network is embedded into the framework to make the learned representations serve both de-confounding and trusted inference. Extensive experiments on synthetic datasets show that the DRL model performs superiorly in learning de-confounding representations and outperforms state-of-the-art counterfactual inference models for continuous treatment variables. In addition, we apply the DRL model to a real-world medical dataset MIMIC and demonstrate a detailed causal relationship between red cell width distribution and mortality.Comment: 15 pages,4 figure

    Interpretability and Explainability: A Machine Learning Zoo Mini-tour

    Full text link
    In this review, we examine the problem of designing interpretable and explainable machine learning models. Interpretability and explainability lie at the core of many machine learning and statistical applications in medicine, economics, law, and natural sciences. Although interpretability and explainability have escaped a clear universal definition, many techniques motivated by these properties have been developed over the recent 30 years with the focus currently shifting towards deep learning methods. In this review, we emphasise the divide between interpretability and explainability and illustrate these two different research directions with concrete examples of the state-of-the-art. The review is intended for a general machine learning audience with interest in exploring the problems of interpretation and explanation beyond logistic regression or random forest variable importance. This work is not an exhaustive literature survey, but rather a primer focusing selectively on certain lines of research which the authors found interesting or informative

    Causally Disentangled Generative Variational AutoEncoder

    Full text link
    We present a new supervised learning technique for the Variational AutoEncoder (VAE) that allows it to learn a causally disentangled representation and generate causally disentangled outcomes simultaneously. We call this approach Causally Disentangled Generation (CDG). CDG is a generative model that accurately decodes an output based on a causally disentangled representation. Our research demonstrates that adding supervised regularization to the encoder alone is insufficient for achieving a generative model with CDG, even for a simple task. Therefore, we explore the necessary and sufficient conditions for achieving CDG within a specific model. Additionally, we introduce a universal metric for evaluating the causal disentanglement of a generative model. Empirical results from both image and tabular datasets support our findings

    Adversarial De-confounding in Individualised Treatment Effects Estimation

    Full text link
    Observational studies have recently received significant attention from the machine learning community due to the increasingly available non-experimental observational data and the limitations of the experimental studies, such as considerable cost, impracticality, small and less representative sample sizes, etc. In observational studies, de-confounding is a fundamental problem of individualised treatment effects (ITE) estimation. This paper proposes disentangled representations with adversarial training to selectively balance the confounders in the binary treatment setting for the ITE estimation. The adversarial training of treatment policy selectively encourages treatment-agnostic balanced representations for the confounders and helps to estimate the ITE in the observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets, with varying degrees of confounding, prove that our proposed approach improves the state-of-the-art methods in achieving lower error in the ITE estimation.Comment: accepted to AISTATS 202

    Measuring axiomatic soundness of counterfactual image models

    Get PDF
    We use the axiomatic definition of counterfactual to derive metrics that enable quantifying the correctness of approximate counterfactual inference models. Abstract: We present a general framework for evaluating image counterfactuals. The power and flexibility of deep generative models make them valuable tools for learning mechanisms in structural causal models. However, their flexibility makes counterfactual identifiability impossible in the general case. Motivated by these issues, we revisit Pearl's axiomatic definition of counterfactuals to determine the necessary constraints of any counterfactual inference model: composition, reversibility, and effectiveness. We frame counterfactuals as functions of an input variable, its parents, and counterfactual parents and use the axiomatic constraints to restrict the set of functions that could represent the counterfactual, thus deriving distance metrics between the approximate and ideal functions. We demonstrate how these metrics can be used to compare and choose between different approximate counterfactual inference models and to provide insight into a model's shortcomings and trade-offs

    Decomposing Counterfactual Explanations for Consequential Decision Making

    Full text link
    The goal of algorithmic recourse is to reverse unfavorable decisions (e.g., from loan denial to approval) under automated decision making by suggesting actionable feature changes (e.g., reduce the number of credit cards). To generate low-cost recourse the majority of methods work under the assumption that the features are independently manipulable (IMF). To address the feature dependency issue the recourse problem is usually studied through the causal recourse paradigm. However, it is well known that strong assumptions, as encoded in causal models and structural equations, hinder the applicability of these methods in complex domains where causal dependency structures are ambiguous. In this work, we develop \texttt{DEAR} (DisEntangling Algorithmic Recourse), a novel and practical recourse framework that bridges the gap between the IMF and the strong causal assumptions. \texttt{DEAR} generates recourses by disentangling the latent representation of co-varying features from a subset of promising recourse features to capture the main practical recourse desiderata. Our experiments on real-world data corroborate our theoretically motivated recourse model and highlight our framework's ability to provide reliable, low-cost recourse in the presence of feature dependencies
    corecore