1,443 research outputs found

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201

    LightFR: Lightweight Federated Recommendation with Privacy-preserving Matrix Factorization

    Full text link
    Federated recommender system (FRS), which enables many local devices to train a shared model jointly without transmitting local raw data, has become a prevalent recommendation paradigm with privacy-preserving advantages. However, previous work on FRS performs similarity search via inner product in continuous embedding space, which causes an efficiency bottleneck when the scale of items is extremely large. We argue that such a scheme in federated settings ignores the limited capacities in resource-constrained user devices (i.e., storage space, computational overhead, and communication bandwidth), and makes it harder to be deployed in large-scale recommender systems. Besides, it has been shown that transmitting local gradients in real-valued form between server and clients may leak users' private information. To this end, we propose a lightweight federated recommendation framework with privacy-preserving matrix factorization, LightFR, that is able to generate high-quality binary codes by exploiting learning to hash technique under federated settings, and thus enjoys both fast online inference and economic memory consumption. Moreover, we devise an efficient federated discrete optimization algorithm to collaboratively train model parameters between the server and clients, which can effectively prevent real-valued gradient attacks from malicious parties. Through extensive experiments on four real-world datasets, we show that our LightFR model outperforms several state-of-the-art FRS methods in terms of recommendation accuracy, inference efficiency and data privacy.Comment: Accepted by ACM Transactions on Information Systems (TOIS

    Content-aware Neural Hashing for Cold-start Recommendation

    Full text link
    Content-aware recommendation approaches are essential for providing meaningful recommendations for \textit{new} (i.e., \textit{cold-start}) items in a recommender system. We present a content-aware neural hashing-based collaborative filtering approach (NeuHash-CF), which generates binary hash codes for users and items, such that the highly efficient Hamming distance can be used for estimating user-item relevance. NeuHash-CF is modelled as an autoencoder architecture, consisting of two joint hashing components for generating user and item hash codes. Inspired from semantic hashing, the item hashing component generates a hash code directly from an item's content information (i.e., it generates cold-start and seen item hash codes in the same manner). This contrasts existing state-of-the-art models, which treat the two item cases separately. The user hash codes are generated directly based on user id, through learning a user embedding matrix. We show experimentally that NeuHash-CF significantly outperforms state-of-the-art baselines by up to 12\% NDCG and 13\% MRR in cold-start recommendation settings, and up to 4\% in both NDCG and MRR in standard settings where all items are present while training. Our approach uses 2-4x shorter hash codes, while obtaining the same or better performance compared to the state of the art, thus consequently also enabling a notable storage reduction.Comment: Accepted to SIGIR 202

    Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems

    Full text link
    Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data, embeddings map each category to a unique dense representation within an embedded space. Since each categorical feature could take on as many as tens of millions of different possible categories, the embedding tables form the primary memory bottleneck during both training and inference. We propose a novel approach for reducing the embedding size in an end-to-end fashion by exploiting complementary partitions of the category set to produce a unique embedding vector for each category without explicit definition. By storing multiple smaller embedding tables based on each complementary partition and combining embeddings from each table, we define a unique embedding for each category at smaller memory cost. This approach may be interpreted as using a specific fixed codebook to ensure uniqueness of each category's representation. Our experimental results demonstrate the effectiveness of our approach over the hashing trick for reducing the size of the embedding tables in terms of model loss and accuracy, while retaining a similar reduction in the number of parameters.Comment: 11 pages, 7 figures, 1 tabl

    Improved Practical Matrix Sketching with Guarantees

    Full text link
    Matrices have become essential data representations for many large-scale problems in data analytics, and hence matrix sketching is a critical task. Although much research has focused on improving the error/size tradeoff under various sketching paradigms, the many forms of error bounds make these approaches hard to compare in theory and in practice. This paper attempts to categorize and compare most known methods under row-wise streaming updates with provable guarantees, and then to tweak some of these methods to gain practical improvements while retaining guarantees. For instance, we observe that a simple heuristic iSVD, with no guarantees, tends to outperform all known approaches in terms of size/error trade-off. We modify the best performing method with guarantees FrequentDirections under the size/error trade-off to match the performance of iSVD and retain its guarantees. We also demonstrate some adversarial datasets where iSVD performs quite poorly. In comparing techniques in the time/error trade-off, techniques based on hashing or sampling tend to perform better. In this setting we modify the most studied sampling regime to retain error guarantee but obtain dramatic improvements in the time/error trade-off. Finally, we provide easy replication of our studies on APT, a new testbed which makes available not only code and datasets, but also a computing platform with fixed environmental settings.Comment: 27 page
    corecore