24 research outputs found

    Guarantees on learning depth-2 neural networks under a data-poisoning attack

    Full text link
    In recent times many state-of-the-art machine learning models have been shown to be fragile to adversarial attacks. In this work we attempt to build our theoretical understanding of adversarially robust learning with neural nets. We demonstrate a specific class of neural networks of finite size and a non-gradient stochastic algorithm which tries to recover the weights of the net generating the realizable true labels in the presence of an oracle doing a bounded amount of malicious additive distortion to the labels. We prove (nearly optimal) trade-offs among the magnitude of the adversarial attack, the accuracy and the confidence achieved by the proposed algorithm.Comment: 11 page

    Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning

    Full text link
    For nonconvex optimization in machine learning, this article proves that every local minimum achieves the globally optimal value of the perturbable gradient basis model at any differentiable point. As a result, nonconvex machine learning is theoretically as supported as convex machine learning with a handcrafted basis in terms of the loss at differentiable local minima, except in the case when a preference is given to the handcrafted basis over the perturbable gradient basis. The proofs of these results are derived under mild assumptions. Accordingly, the proven results are directly applicable to many machine learning models, including practical deep neural networks, without any modification of practical methods. Furthermore, as special cases of our general results, this article improves or complements several state-of-the-art theoretical results on deep neural networks, deep residual networks, and overparameterized deep neural networks with a unified proof technique and novel geometric insights. A special case of our results also contributes to the theoretical foundation of representation learning.Comment: Neural computation, MIT pres
    corecore