1,488 research outputs found

    MedCPT: Contrastive Pre-trained Transformers with Large-scale PubMed Search Logs for Zero-shot Biomedical Information Retrieval

    Full text link
    Information retrieval (IR) is essential in biomedical knowledge acquisition and clinical decision support. While recent progress has shown that language model encoders perform better semantic retrieval, training such models requires abundant query-article annotations that are difficult to obtain in biomedicine. As a result, most biomedical IR systems only conduct lexical matching. In response, we introduce MedCPT, a first-of-its-kind Contrastively Pre-trained Transformer model for zero-shot semantic IR in biomedicine. To train MedCPT, we collected an unprecedented scale of 255 million user click logs from PubMed. With such data, we use contrastive learning to train a pair of closely-integrated retriever and re-ranker. Experimental results show that MedCPT sets new state-of-the-art performance on six biomedical IR tasks, outperforming various baselines including much larger models such as GPT-3-sized cpt-text-XL. In addition, MedCPT also generates better biomedical article and sentence representations for semantic evaluations. As such, MedCPT can be readily applied to various real-world biomedical IR tasks.Comment: The MedCPT code and API are available at https://github.com/ncbi/MedCP

    A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion

    Get PDF
    Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.Comment: To appear in Conference of Information Knowledge and Management (CIKM) 201

    LADER: Log-Augmented DEnse Retrieval for Biomedical Literature Search

    Full text link
    Queries with similar information needs tend to have similar document clicks, especially in biomedical literature search engines where queries are generally short and top documents account for most of the total clicks. Motivated by this, we present a novel architecture for biomedical literature search, namely Log-Augmented DEnse Retrieval (LADER), which is a simple plug-in module that augments a dense retriever with the click logs retrieved from similar training queries. Specifically, LADER finds both similar documents and queries to the given query by a dense retriever. Then, LADER scores relevant (clicked) documents of similar queries weighted by their similarity to the input query. The final document scores by LADER are the average of (1) the document similarity scores from the dense retriever and (2) the aggregated document scores from the click logs of similar queries. Despite its simplicity, LADER achieves new state-of-the-art (SOTA) performance on TripClick, a recently released benchmark for biomedical literature retrieval. On the frequent (HEAD) queries, LADER largely outperforms the best retrieval model by 39% relative NDCG@10 (0.338 v.s. 0.243). LADER also achieves better performance on the less frequent (TORSO) queries with 11% relative NDCG@10 improvement over the previous SOTA (0.303 v.s. 0.272). On the rare (TAIL) queries where similar queries are scarce, LADER still compares favorably to the previous SOTA method (NDCG@10: 0.310 v.s. 0.295). On all queries, LADER can improve the performance of a dense retriever by 24%-37% relative NDCG@10 while not requiring additional training, and further performance improvement is expected from more logs. Our regression analysis has shown that queries that are more frequent, have higher entropy of query similarity and lower entropy of document similarity, tend to benefit more from log augmentation.Comment: SIGIR 202

    Context-aware Deep Model for Entity Recommendation in Search Engine at Alibaba

    Full text link
    Entity recommendation, providing search users with an improved experience via assisting them in finding related entities for a given query, has become an indispensable feature of today's search engines. Existing studies typically only consider the queries with explicit entities. They usually fail to handle complex queries that without entities, such as "what food is good for cold weather", because their models could not infer the underlying meaning of the input text. In this work, we believe that contexts convey valuable evidence that could facilitate the semantic modeling of queries, and take them into consideration for entity recommendation. In order to better model the semantics of queries and entities, we learn the representation of queries and entities jointly with attentive deep neural networks. We evaluate our approach using large-scale, real-world search logs from a widely used commercial Chinese search engine. Our system has been deployed in ShenMa Search Engine and you can fetch it in UC Browser of Alibaba. Results from online A/B test suggest that the impression efficiency of click-through rate increased by 5.1% and page view increased by 5.5%.Comment: CIKM2019 International Workshop on Entity Retrieval. arXiv admin note: text overlap with arXiv:1511.08996 by other author
    • …
    corecore