7 research outputs found

    Learning Deformable Kernels for Image and Video Denoising

    Full text link
    Most of the classical denoising methods restore clear results by selecting and averaging pixels in the noisy input. Instead of relying on hand-crafted selecting and averaging strategies, we propose to explicitly learn this process with deep neural networks. Specifically, we propose deformable 2D kernels for image denoising where the sampling locations and kernel weights are both learned. The proposed kernel naturally adapts to image structures and could effectively reduce the oversmoothing artifacts. Furthermore, we develop 3D deformable kernels for video denoising to more efficiently sample pixels across the spatial-temporal space. Our method is able to solve the misalignment issues of large motion from dynamic scenes. For better training our video denoising model, we introduce the trilinear sampler and a new regularization term. We demonstrate that the proposed method performs favorably against the state-of-the-art image and video denoising approaches on both synthetic and real-world data.Comment: 10 page

    Attention Mechanism Enhanced Kernel Prediction Networks for Denoising of Burst Images

    Full text link
    Deep learning based image denoising methods have been extensively investigated. In this paper, attention mechanism enhanced kernel prediction networks (AME-KPNs) are proposed for burst image denoising, in which, nearly cost-free attention modules are adopted to first refine the feature maps and to further make a full use of the inter-frame and intra-frame redundancies within the whole image burst. The proposed AME-KPNs output per-pixel spatially-adaptive kernels, residual maps and corresponding weight maps, in which, the predicted kernels roughly restore clean pixels at their corresponding locations via an adaptive convolution operation, and subsequently, residuals are weighted and summed to compensate the limited receptive field of predicted kernels. Simulations and real-world experiments are conducted to illustrate the robustness of the proposed AME-KPNs in burst image denoising.Comment: accepted by ICASSP 202

    Quadratic video interpolation

    Full text link
    Video interpolation is an important problem in computer vision, which helps overcome the temporal limitation of camera sensors. Existing video interpolation methods usually assume uniform motion between consecutive frames and use linear models for interpolation, which cannot well approximate the complex motion in the real world. To address these issues, we propose a quadratic video interpolation method which exploits the acceleration information in videos. This method allows prediction with curvilinear trajectory and variable velocity, and generates more accurate interpolation results. For high-quality frame synthesis, we develop a flow reversal layer to estimate flow fields starting from the unknown target frame to the source frame. In addition, we present techniques for flow refinement. Extensive experiments demonstrate that our approach performs favorably against the existing linear models on a wide variety of video datasets.Comment: NeurIPS 2019, project website: https://sites.google.com/view/xiangyuxu/qvi_nips1

    Learnable Sampling 3D Convolution for Video Enhancement and Action Recognition

    Full text link
    A key challenge in video enhancement and action recognition is to fuse useful information from neighboring frames. Recent works suggest establishing accurate correspondences between neighboring frames before fusing temporal information. However, the generated results heavily depend on the quality of correspondence estimation. In this paper, we propose a more robust solution: \emph{sampling and fusing multi-level features} across neighborhood frames to generate the results. Based on this idea, we introduce a new module to improve the capability of 3D convolution, namely, learnable sampling 3D convolution (\emph{LS3D-Conv}). We add learnable 2D offsets to 3D convolution which aims to sample locations on spatial feature maps across frames. The offsets can be learned for specific tasks. The \emph{LS3D-Conv} can flexibly replace 3D convolution layers in existing 3D networks and get new architectures, which learns the sampling at multiple feature levels. The experiments on video interpolation, video super-resolution, video denoising, and action recognition demonstrate the effectiveness of our approach

    Unified Dynamic Convolutional Network for Super-Resolution with Variational Degradations

    Full text link
    Deep Convolutional Neural Networks (CNNs) have achieved remarkable results on Single Image Super-Resolution (SISR). Despite considering only a single degradation, recent studies also include multiple degrading effects to better reflect real-world cases. However, most of the works assume a fixed combination of degrading effects, or even train an individual network for different combinations. Instead, a more practical approach is to train a single network for wide-ranging and variational degradations. To fulfill this requirement, this paper proposes a unified network to accommodate the variations from inter-image (cross-image variations) and intra-image (spatial variations). Different from the existing works, we incorporate dynamic convolution which is a far more flexible alternative to handle different variations. In SISR with non-blind setting, our Unified Dynamic Convolutional Network for Variational Degradations (UDVD) is evaluated on both synthetic and real images with an extensive set of variations. The qualitative results demonstrate the effectiveness of UDVD over various existing works. Extensive experiments show that our UDVD achieves favorable or comparable performance on both synthetic and real images.Comment: CVPR 202

    Deep Bilateral Retinex for Low-Light Image Enhancement

    Full text link
    Low-light images, i.e. the images captured in low-light conditions, suffer from very poor visibility caused by low contrast, color distortion and significant measurement noise. Low-light image enhancement is about improving the visibility of low-light images. As the measurement noise in low-light images is usually significant yet complex with spatially-varying characteristic, how to handle the noise effectively is an important yet challenging problem in low-light image enhancement. Based on the Retinex decomposition of natural images, this paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise. The basic idea is to train a neural network to generate a set of pixel-wise operators for simultaneously predicting the noise and the illumination layer, where the operators are defined in the bilateral space. Such an integrated approach allows us to have an accurate prediction of the reflectance layer in the presence of significant spatially-varying measurement noise. Extensive experiments on several benchmark datasets have shown that the proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.Comment: 15 page

    Deep Learning on Image Denoising: An overview

    Full text link
    Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research
    corecore