25 research outputs found

    Scalable Data Augmentation for Deep Learning

    Full text link
    Scalable Data Augmentation (SDA) provides a framework for training deep learning models using auxiliary hidden layers. Scalable MCMC is available for network training and inference. SDA provides a number of computational advantages over traditional algorithms, such as avoiding backtracking, local modes and can perform optimization with stochastic gradient descent (SGD) in TensorFlow. Standard deep neural networks with logit, ReLU and SVM activation functions are straightforward to implement. To illustrate our architectures and methodology, we use P\'{o}lya-Gamma logit data augmentation for a number of standard datasets. Finally, we conclude with directions for future research

    Generating Synthetic Data for Neural Keyword-to-Question Models

    Full text link
    Search typically relies on keyword queries, but these are often semantically ambiguous. We propose to overcome this by offering users natural language questions, based on their keyword queries, to disambiguate their intent. This keyword-to-question task may be addressed using neural machine translation techniques. Neural translation models, however, require massive amounts of training data (keyword-question pairs), which is unavailable for this task. The main idea of this paper is to generate large amounts of synthetic training data from a small seed set of hand-labeled keyword-question pairs. Since natural language questions are available in large quantities, we develop models to automatically generate the corresponding keyword queries. Further, we introduce various filtering mechanisms to ensure that synthetic training data is of high quality. We demonstrate the feasibility of our approach using both automatic and manual evaluation. This is an extended version of the article published with the same title in the Proceedings of ICTIR'18.Comment: Extended version of ICTIR'18 full paper, 11 page
    corecore