3,649 research outputs found

    A deep representation for depth images from synthetic data

    Full text link
    Convolutional Neural Networks (CNNs) trained on large scale RGB databases have become the secret sauce in the majority of recent approaches for object categorization from RGB-D data. Thanks to colorization techniques, these methods exploit the filters learned from 2D images to extract meaningful representations in 2.5D. Still, the perceptual signature of these two kind of images is very different, with the first usually strongly characterized by textures, and the second mostly by silhouettes of objects. Ideally, one would like to have two CNNs, one for RGB and one for depth, each trained on a suitable data collection, able to capture the perceptual properties of each channel for the task at hand. This has not been possible so far, due to the lack of a suitable depth database. This paper addresses this issue, proposing to opt for synthetically generated images rather than collecting by hand a 2.5D large scale database. While being clearly a proxy for real data, synthetic images allow to trade quality for quantity, making it possible to generate a virtually infinite amount of data. We show that the filters learned from such data collection, using the very same architecture typically used on visual data, learns very different filters, resulting in depth features (a) able to better characterize the different facets of depth images, and (b) complementary with respect to those derived from CNNs pre-trained on 2D datasets. Experiments on two publicly available databases show the power of our approach

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Two-Stream RNN/CNN for Action Recognition in 3D Videos

    Full text link
    The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.Comment: Published in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
    • …
    corecore