80 research outputs found

    Pose Constraints for Consistent Self-supervised Monocular Depth and Ego-motion

    Full text link
    Self-supervised monocular depth estimation approaches suffer not only from scale ambiguity but also infer temporally inconsistent depth maps w.r.t. scale. While disambiguating scale during training is not possible without some kind of ground truth supervision, having scale consistent depth predictions would make it possible to calculate scale once during inference as a post-processing step and use it over-time. With this as a goal, a set of temporal consistency losses that minimize pose inconsistencies over time are introduced. Evaluations show that introducing these constraints not only reduces depth inconsistencies but also improves the baseline performance of depth and ego-motion prediction.Comment: Scandinavian Conference on Image Analysis (SCIA) 202

    Learn to cycle: Time-consistent feature discovery for action recognition

    Get PDF
    Generalizing over temporal variations is a prerequisite for effective action recognition in videos. Despite significant advances in deep neural networks, it remains a challenge to focus on short-term discriminative motions in relation to the overall performance of an action. We address this challenge by allowing some flexibility in discovering relevant spatio-temporal features. We introduce Squeeze and Recursion Temporal Gates (SRTG), an approach that favors inputs with similar activations with potential temporal variations. We implement this idea with a novel CNN block that uses an LSTM to encapsulate feature dynamics, in conjunction with a temporal gate that is responsible for evaluating the consistency of the discovered dynamics and the modeled features. We show consistent improvement when using SRTG blocks, with only a minimal increase in the number of GFLOPs. On Kinetics-700, we perform on par with current state-of-the-art models, and outperform these on HACS, Moments in Time, UCF-101 and HMDB-51
    • …
    corecore