2 research outputs found

    Learning concise pattern for interlinking with extended version space

    Get PDF
    fan2014bInternational audienceMany data sets on the web contain analogous data which represent the same resources in the world, so it is helpful to interlink different data sets for sharing information. However, finding correct links is very challenging because there are many instances to compare. In this paper, an interlinking method is proposed to interlink instances across different data sets. The input is class correspondences, property correspondences and a set of sample links that are assessed by users as either "positive" or "negative". We apply a machine learning method, Version Space, in order to construct a classifier, which is called interlinking pattern, that can justify correct links and incorrect links for both data sets. We improve the learning method so that it resolves the no-conjunctive-pattern problem. We call it Extended Version Space. Experiments confirm that our method with only 1% of sample links already reaches a high F-measure (around 0.96-0.99). The F-measure quickly converges, being improved by nearly 10% than other comparable approaches

    An Adaptive Approach for Interlinking Georeferenced Data

    Get PDF
    International audienceThe resources published on the Web of data are often described by spatial references such as coordinates. The common data linking approaches are mainly based on the hypothesis that spatially close resources are more likely to represent the same thing. However, this assumption is valid only when the spatial references that are compared have been produced with the same positional accuracy, and when they actually represent the same spatial characteristic of the resources captured in an unambiguous way. Otherwise, spatial distance-based matching algorithms may produce erroneous links. In this article, we first suggest to formalize and acquire the knowledge about the spatial references, namely their positional accuracy, their geometric modeling, their level of detail, and the vagueness of the spatial entities they represent. We then propose an interlinking approach that dynamically adapts the way spatial references are compared, based on this knowledge
    corecore