4,302 research outputs found

    Local Multi-Grouped Binary Descriptor with Ring-based Pooling Configuration and Optimization

    Full text link
    Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as Ring-based Multi-Grouped Descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are two-fold. Firstly, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales and distances. This leads to a more meaningful description than existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Secondly, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse SVM learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.Comment: To appear in IEEE Trans. on Image Processing, 201

    Recent Advance in Content-based Image Retrieval: A Literature Survey

    Full text link
    The explosive increase and ubiquitous accessibility of visual data on the Web have led to the prosperity of research activity in image search or retrieval. With the ignorance of visual content as a ranking clue, methods with text search techniques for visual retrieval may suffer inconsistency between the text words and visual content. Content-based image retrieval (CBIR), which makes use of the representation of visual content to identify relevant images, has attracted sustained attention in recent two decades. Such a problem is challenging due to the intention gap and the semantic gap problems. Numerous techniques have been developed for content-based image retrieval in the last decade. The purpose of this paper is to categorize and evaluate those algorithms proposed during the period of 2003 to 2016. We conclude with several promising directions for future research.Comment: 22 page

    LDOP: Local Directional Order Pattern for Robust Face Retrieval

    Full text link
    The local descriptors have gained wide range of attention due to their enhanced discriminative abilities. It has been proved that the consideration of multi-scale local neighborhood improves the performance of the descriptor, though at the cost of increased dimension. This paper proposes a novel method to construct a local descriptor using multi-scale neighborhood by finding the local directional order among the intensity values at different scales in a particular direction. Local directional order is the multi-radius relationship factor in a particular direction. The proposed local directional order pattern (LDOP) for a particular pixel is computed by finding the relationship between the center pixel and local directional order indexes. It is required to transform the center value into the range of neighboring orders. Finally, the histogram of LDOP is computed over whole image to construct the descriptor. In contrast to the state-of-the-art descriptors, the dimension of the proposed descriptor does not depend upon the number of neighbors involved to compute the order; it only depends upon the number of directions. The introduced descriptor is evaluated over the image retrieval framework and compared with the state-of-the-art descriptors over challenging face databases such as PaSC, LFW, PubFig, FERET, AR, AT&T, and ExtendedYale. The experimental results confirm the superiority and robustness of the LDOP descriptor.Comment: Published in Multimedia Tools and Applications, Springe

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Point Context: An Effective Shape Descriptor for RST-invariant Trajectory Recognition

    Full text link
    Motion trajectory recognition is important for characterizing the moving property of an object. The speed and accuracy of trajectory recognition rely on a compact and discriminative feature representation, and the situations of varying rotation, scaling and translation has to be specially considered. In this paper we propose a novel feature extraction method for trajectories. Firstly a trajectory is represented by a proposed point context, which is a rotation-scale-translation (RST) invariant shape descriptor with a flexible tradeoff between computational complexity and discrimination, yet we prove that it is a complete shape descriptor. Secondly, the shape context is nonlinearly mapped to a subspace by kernel nonparametric discriminant analysis (KNDA) to get a compact feature representation, and thus a trajectory is projected to a single point in a low-dimensional feature space. Experimental results show that, the proposed trajectory feature shows encouraging improvement than state-of-art methods.Comment: 11 pages, 10 figure

    Covariance of Motion and Appearance Featuresfor Spatio Temporal Recognition Tasks

    Full text link
    In this paper, we introduce an end-to-end framework for video analysis focused towards practical scenarios built on theoretical foundations from sparse representation, including a novel descriptor for general purpose video analysis. In our approach, we compute kinematic features from optical flow and first and second-order derivatives of intensities to represent motion and appearance respectively. These features are then used to construct covariance matrices which capture joint statistics of both low-level motion and appearance features extracted from a video. Using an over-complete dictionary of the covariance based descriptors built from labeled training samples, we formulate low-level event recognition as a sparse linear approximation problem. Within this, we pose the sparse decomposition of a covariance matrix, which also conforms to the space of semi-positive definite matrices, as a determinant maximization problem. Also since covariance matrices lie on non-linear Riemannian manifolds, we compare our former approach with a sparse linear approximation alternative that is suitable for equivalent vector spaces of covariance matrices. This is done by searching for the best projection of the query data on a dictionary using an Orthogonal Matching pursuit algorithm. We show the applicability of our video descriptor in two different application domains - namely low-level event recognition in unconstrained scenarios and gesture recognition using one shot learning. Our experiments provide promising insights in large scale video analysis

    From handcrafted to deep local features

    Full text link
    This paper presents an overview of the evolution of local features from handcrafted to deep-learning-based methods, followed by a discussion of several benchmarks and papers evaluating such local features. Our investigations are motivated by 3D reconstruction problems, where the precise location of the features is important. As we describe these methods, we highlight and explain the challenges of feature extraction and potential ways to overcome them. We first present handcrafted methods, followed by methods based on classical machine learning and finally we discuss methods based on deep-learning. This largely chronologically-ordered presentation will help the reader to fully understand the topic of image and region description in order to make best use of it in modern computer vision applications. In particular, understanding handcrafted methods and their motivation can help to understand modern approaches and how machine learning is used to improve the results. We also provide references to most of the relevant literature and code.Comment: Preprin

    Face Recognition: A Novel Multi-Level Taxonomy based Survey

    Full text link
    In a world where security issues have been gaining growing importance, face recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. To help understanding the landscape and abstraction levels relevant for face recognition systems, face recognition taxonomies allow a deeper dissection and comparison of the existing solutions. This paper proposes a new, more encompassing and richer multi-level face recognition taxonomy, facilitating the organization and categorization of available and emerging face recognition solutions; this taxonomy may also guide researchers in the development of more efficient face recognition solutions. The proposed multi-level taxonomy considers levels related to the face structure, feature support and feature extraction approach. Following the proposed taxonomy, a comprehensive survey of representative face recognition solutions is presented. The paper concludes with a discussion on current algorithmic and application related challenges which may define future research directions for face recognition.Comment: This paper is a preprint of a paper submitted to IET Biometrics. If accepted, the copy of record will be available at the IET Digital Librar

    Con-Patch: When a Patch Meets its Context

    Full text link
    Measuring the similarity between patches in images is a fundamental building block in various tasks. Naturally, the patch-size has a major impact on the matching quality, and on the consequent application performance. Under the assumption that our patch database is sufficiently sampled, using large patches (e.g. 21-by-21) should be preferred over small ones (e.g. 7-by-7). However, this "dense-sampling" assumption is rarely true; in most cases large patches cannot find relevant nearby examples. This phenomenon is a consequence of the curse of dimensionality, stating that the database-size should grow exponentially with the patch-size to ensure proper matches. This explains the favored choice of small patch-size in most applications. Is there a way to keep the simplicity and work with small patches while getting some of the benefits that large patches provide? In this work we offer such an approach. We propose to concatenate the regular content of a conventional (small) patch with a compact representation of its (large) surroundings - its context. Therefore, with a minor increase of the dimensions (e.g. with additional 10 values to the patch representation), we implicitly/softly describe the information of a large patch. The additional descriptors are computed based on a self-similarity behavior of the patch surrounding. We show that this approach achieves better matches, compared to the use of conventional-size patches, without the need to increase the database-size. Also, the effectiveness of the proposed method is tested on three distinct problems: (i) External natural image denoising, (ii) Depth image super-resolution, and (iii) Motion-compensated frame-rate up-conversion.Comment: Accepted to IEEE Transactions on Image Processin

    Robust Face Recognition with Structural Binary Gradient Patterns

    Full text link
    This paper presents a computationally efficient yet powerful binary framework for robust facial representation based on image gradients. It is termed as structural binary gradient patterns (SBGP). To discover underlying local structures in the gradient domain, we compute image gradients from multiple directions and simplify them into a set of binary strings. The SBGP is derived from certain types of these binary strings that have meaningful local structures and are capable of resembling fundamental textural information. They detect micro orientational edges and possess strong orientation and locality capabilities, thus enabling great discrimination. The SBGP also benefits from the advantages of the gradient domain and exhibits profound robustness against illumination variations. The binary strategy realized by pixel correlations in a small neighborhood substantially simplifies the computational complexity and achieves extremely efficient processing with only 0.0032s in Matlab for a typical face image. Furthermore, the discrimination power of the SBGP can be enhanced on a set of defined orientational image gradient magnitudes, further enforcing locality and orientation. Results of extensive experiments on various benchmark databases illustrate significant improvements of the SBGP based representations over the existing state-of-the-art local descriptors in the terms of discrimination, robustness and complexity. Codes for the SBGP methods will be available at http://www.eee.manchester.ac.uk/research/groups/sisp/software/
    • …
    corecore