80,482 research outputs found

    Learning Discrete Bayesian Networks from Continuous Data

    Get PDF
    Learning Bayesian networks from raw data can help provide insights into the relationships between variables. While real data often contains a mixture of discrete and continuous-valued variables, many Bayesian network structure learning algorithms assume all random variables are discrete. Thus, continuous variables are often discretized when learning a Bayesian network. However, the choice of discretization policy has significant impact on the accuracy, speed, and interpretability of the resulting models. This paper introduces a principled Bayesian discretization method for continuous variables in Bayesian networks with quadratic complexity instead of the cubic complexity of other standard techniques. Empirical demonstrations show that the proposed method is superior to the established minimum description length algorithm. In addition, this paper shows how to incorporate existing methods into the structure learning process to discretize all continuous variables and simultaneously learn Bayesian network structures

    Dirichlet Bayesian Network Scores and the Maximum Relative Entropy Principle

    Full text link
    A classic approach for learning Bayesian networks from data is to identify a maximum a posteriori (MAP) network structure. In the case of discrete Bayesian networks, MAP networks are selected by maximising one of several possible Bayesian Dirichlet (BD) scores; the most famous is the Bayesian Dirichlet equivalent uniform (BDeu) score from Heckerman et al (1995). The key properties of BDeu arise from its uniform prior over the parameters of each local distribution in the network, which makes structure learning computationally efficient; it does not require the elicitation of prior knowledge from experts; and it satisfies score equivalence. In this paper we will review the derivation and the properties of BD scores, and of BDeu in particular, and we will link them to the corresponding entropy estimates to study them from an information theoretic perspective. To this end, we will work in the context of the foundational work of Giffin and Caticha (2007), who showed that Bayesian inference can be framed as a particular case of the maximum relative entropy principle. We will use this connection to show that BDeu should not be used for structure learning from sparse data, since it violates the maximum relative entropy principle; and that it is also problematic from a more classic Bayesian model selection perspective, because it produces Bayes factors that are sensitive to the value of its only hyperparameter. Using a large simulation study, we found in our previous work (Scutari, 2016) that the Bayesian Dirichlet sparse (BDs) score seems to provide better accuracy in structure learning; in this paper we further show that BDs does not suffer from the issues above, and we recommend to use it for sparse data instead of BDeu. Finally, will show that these issues are in fact different aspects of the same problem and a consequence of the distributional assumptions of the prior.Comment: 20 pages, 4 figures; extended version submitted to Behaviormetrik
    • …
    corecore