40,092 research outputs found

    Large Margin Boltzmann Machines and Large Margin Sigmoid Belief Networks

    Full text link
    Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. In this paper, we propose two new types of probabilistic graphical models, large margin Boltzmann machines (LMBMs) and large margin sigmoid belief networks (LMSBNs), for structured prediction. LMSBNs in particular allow a very fast inference algorithm for arbitrary graph structures that runs in polynomial time with a high probability. This probability is data-distribution dependent and is maximized in learning. The new approach overcomes the representation-efficiency trade-off in previous models and allows fast structured prediction with complicated graph structures. We present results from applying a fully connected model to multi-label scene classification and demonstrate that the proposed approach can yield significant performance gains over current state-of-the-art methods

    Improving Joint Training of Inference Networks and Structured Prediction Energy Networks

    Full text link
    Deep energy-based models are powerful, but pose challenges for learning and inference (Belanger and McCallum, 2016). Tu and Gimpel (2018) developed an efficient framework for energy-based models by training "inference networks" to approximate structured inference instead of using gradient descent. However, their alternating optimization approach suffers from instabilities during training, requiring additional loss terms and careful hyperparameter tuning. In this paper, we contribute several strategies to stabilize and improve this joint training of energy functions and inference networks for structured prediction. We design a compound objective to jointly train both cost-augmented and test-time inference networks along with the energy function. We propose joint parameterizations for the inference networks that encourage them to capture complementary functionality during learning. We empirically validate our strategies on two sequence labeling tasks, showing easier paths to strong performance than prior work, as well as further improvements with global energy terms

    Structured Prediction Energy Networks

    Full text link
    We introduce structured prediction energy networks (SPENs), a flexible framework for structured prediction. A deep architecture is used to define an energy function of candidate labels, and then predictions are produced by using back-propagation to iteratively optimize the energy with respect to the labels. This deep architecture captures dependencies between labels that would lead to intractable graphical models, and performs structure learning by automatically learning discriminative features of the structured output. One natural application of our technique is multi-label classification, which traditionally has required strict prior assumptions about the interactions between labels to ensure tractable learning and prediction. We are able to apply SPENs to multi-label problems with substantially larger label sets than previous applications of structured prediction, while modeling high-order interactions using minimal structural assumptions. Overall, deep learning provides remarkable tools for learning features of the inputs to a prediction problem, and this work extends these techniques to learning features of structured outputs. Our experiments provide impressive performance on a variety of benchmark multi-label classification tasks, demonstrate that our technique can be used to provide interpretable structure learning, and illuminate fundamental trade-offs between feed-forward and iterative structured prediction.Comment: ICML 201

    Deep Structured Prediction with Nonlinear Output Transformations

    Full text link
    Deep structured models are widely used for tasks like semantic segmentation, where explicit correlations between variables provide important prior information which generally helps to reduce the data needs of deep nets. However, current deep structured models are restricted by oftentimes very local neighborhood structure, which cannot be increased for computational complexity reasons, and by the fact that the output configuration, or a representation thereof, cannot be transformed further. Very recent approaches which address those issues include graphical model inference inside deep nets so as to permit subsequent non-linear output space transformations. However, optimization of those formulations is challenging and not well understood. Here, we develop a novel model which generalizes existing approaches, such as structured prediction energy networks, and discuss a formulation which maintains applicability of existing inference techniques.Comment: Appearing in NIPS 201

    Benchmarking Approximate Inference Methods for Neural Structured Prediction

    Full text link
    Exact structured inference with neural network scoring functions is computationally challenging but several methods have been proposed for approximating inference. One approach is to perform gradient descent with respect to the output structure directly (Belanger and McCallum, 2016). Another approach, proposed recently, is to train a neural network (an "inference network") to perform inference (Tu and Gimpel, 2018). In this paper, we compare these two families of inference methods on three sequence labeling datasets. We choose sequence labeling because it permits us to use exact inference as a benchmark in terms of speed, accuracy, and search error. Across datasets, we demonstrate that inference networks achieve a better speed/accuracy/search error trade-off than gradient descent, while also being faster than exact inference at similar accuracy levels. We find further benefit by combining inference networks and gradient descent, using the former to provide a warm start for the latter.Comment: NAACL2019 camera-ready versio

    Local Perturb-and-MAP for Structured Prediction

    Full text link
    Conditional random fields (CRFs) provide a powerful tool for structured prediction, but cast significant challenges in both the learning and inference steps. Approximation techniques are widely used in both steps, which should be considered jointly to guarantee good performance (a.k.a. "inferning"). Perturb-and-MAP models provide a promising alternative to CRFs, but require global combinatorial optimization and hence they are usable only on specific models. In this work, we present a new Local Perturb-and-MAP (locPMAP) framework that replaces the global optimization with a local optimization by exploiting our observed connection between locPMAP and the pseudolikelihood of the original CRF model. We test our approach on three different vision tasks and show that our method achieves consistently improved performance over other approximate inference techniques optimized to a pseudolikelihood objective. Additionally, we demonstrate that we can integrate our method in the fully convolutional network framework to increase our model's complexity. Finally, our observed connection between locPMAP and the pseudolikelihood leads to a novel perspective for understanding and using pseudolikelihood

    Learning Discriminators as Energy Networks in Adversarial Learning

    Full text link
    We propose a novel framework for structured prediction via adversarial learning. Existing adversarial learning methods involve two separate networks, i.e., the structured prediction models and the discriminative models, in the training. The information captured by discriminative models complements that in the structured prediction models, but few existing researches have studied on utilizing such information to improve structured prediction models at the inference stage. In this work, we propose to refine the predictions of structured prediction models by effectively integrating discriminative models into the prediction. Discriminative models are treated as energy-based models. Similar to the adversarial learning, discriminative models are trained to estimate scores which measure the quality of predicted outputs, while structured prediction models are trained to predict contrastive outputs with maximal energy scores. In this way, the gradient vanishing problem is ameliorated, and thus we are able to perform inference by following the ascent gradient directions of discriminative models to refine structured prediction models. The proposed method is able to handle a range of tasks, e.g., multi-label classification and image segmentation. Empirical results on these two tasks validate the effectiveness of our learning method

    Adaptive Path-Integral Autoencoder: Representation Learning and Planning for Dynamical Systems

    Full text link
    We present a representation learning algorithm that learns a low-dimensional latent dynamical system from high-dimensional \textit{sequential} raw data, e.g., video. The framework builds upon recent advances in amortized inference methods that use both an inference network and a refinement procedure to output samples from a variational distribution given an observation sequence, and takes advantage of the duality between control and inference to approximately solve the intractable inference problem using the path integral control approach. The learned dynamical model can be used to predict and plan the future states; we also present the efficient planning method that exploits the learned low-dimensional latent dynamics. Numerical experiments show that the proposed path-integral control based variational inference method leads to tighter lower bounds in statistical model learning of sequential data. The supplementary video: https://youtu.be/xCp35crUoLQComment: Neural Information Processing Systems (NeurIPS) 201

    End-to-end learning potentials for structured attribute prediction

    Full text link
    We present a structured inference approach in deep neural networks for multiple attribute prediction. In attribute prediction, a common approach is to learn independent classifiers on top of a good feature representation. However, such classifiers assume conditional independence on features and do not explicitly consider the dependency between attributes in the inference process. We propose to formulate attribute prediction in terms of marginal inference in the conditional random field. We model potential functions by deep neural networks and apply the sum-product algorithm to solve for the approximate marginal distribution in feed-forward networks. Our message passing layer implements sparse pairwise potentials by a softplus-linear function that is equivalent to a higher-order classifier, and learns all the model parameters by end-to-end back propagation. The experimental results using SUN attributes and CelebA datasets suggest that the structured inference improves the attribute prediction performance, and possibly uncovers the hidden relationship between attributes

    Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps

    Full text link
    We introduce Graph-Structured Sum-Product Networks (GraphSPNs), a probabilistic approach to structured prediction for problems where dependencies between latent variables are expressed in terms of arbitrary, dynamic graphs. While many approaches to structured prediction place strict constraints on the interactions between inferred variables, many real-world problems can be only characterized using complex graph structures of varying size, often contaminated with noise when obtained from real data. Here, we focus on one such problem in the domain of robotics. We demonstrate how GraphSPNs can be used to bolster inference about semantic, conceptual place descriptions using noisy topological relations discovered by a robot exploring large-scale office spaces. Through experiments, we show that GraphSPNs consistently outperform the traditional approach based on undirected graphical models, successfully disambiguating information in global semantic maps built from uncertain, noisy local evidence. We further exploit the probabilistic nature of the model to infer marginal distributions over semantic descriptions of as yet unexplored places and detect spatial environment configurations that are novel and incongruent with the known evidence.Comment: 9 pages, 8 figures. AAAI Conference on Artificial Intelligence (AAAI 2018
    • …
    corecore