5,615 research outputs found

    Temporal Sentence Grounding in Videos: A Survey and Future Directions

    Full text link
    Temporal sentence grounding in videos (TSGV), \aka natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate the methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.Comment: 29 pages, 32 figures, 9 table

    DemaFormer: Damped Exponential Moving Average Transformer with Energy-Based Modeling for Temporal Language Grounding

    Full text link
    Temporal Language Grounding seeks to localize video moments that semantically correspond to a natural language query. Recent advances employ the attention mechanism to learn the relations between video moments and the text query. However, naive attention might not be able to appropriately capture such relations, resulting in ineffective distributions where target video moments are difficult to separate from the remaining ones. To resolve the issue, we propose an energy-based model framework to explicitly learn moment-query distributions. Moreover, we propose DemaFormer, a novel Transformer-based architecture that utilizes exponential moving average with a learnable damping factor to effectively encode moment-query inputs. Comprehensive experiments on four public temporal language grounding datasets showcase the superiority of our methods over the state-of-the-art baselines.Comment: Accepted at EMNLP 2023 (Findings

    UCF-Crime Annotation: A Benchmark for Surveillance Video-and-Language Understanding

    Full text link
    Surveillance videos are an essential component of daily life with various critical applications, particularly in public security. However, current surveillance video tasks mainly focus on classifying and localizing anomalous events. Existing methods are limited to detecting and classifying the predefined events with unsatisfactory generalization ability and semantic understanding, although they have obtained considerable performance. To address this issue, we propose constructing the first multimodal surveillance video dataset by manually annotating the real-world surveillance dataset UCF-Crime with fine-grained event content and timing. Our newly annotated dataset, UCA (UCF-Crime Annotation), provides a novel benchmark for multimodal surveillance video analysis. It not only describes events in detailed descriptions but also provides precise temporal grounding of the events in 0.1-second intervals. UCA contains 20,822 sentences, with an average length of 23 words, and its annotated videos are as long as 102 hours. Furthermore, we benchmark the state-of-the-art models of multiple multimodal tasks on this newly created dataset, including temporal sentence grounding in videos, video captioning, and dense video captioning. Through our experiments, we found that mainstream models used in previously publicly available datasets perform poorly on multimodal surveillance video scenarios, which highlights the necessity of constructing this dataset. The link to our dataset and code is provided at: https://github.com/Xuange923/UCA-dataset
    • …
    corecore