6,443 research outputs found

    Leveraging the Power of Gabor Phase for Face Identification: A Block Matching Approach

    Full text link
    Different from face verification, face identification is much more demanding. To reach comparable performance, an identifier needs to be roughly N times better than a verifier. To expect a breakthrough in face identification, we need a fresh look at the fundamental building blocks of face recognition. In this paper we focus on the selection of a suitable signal representation and better matching strategy for face identification. We demonstrate how Gabor phase could be leveraged to improve the performance of face identification by using the Block Matching method. Compared to the existing approaches, the proposed method features much lower algorithmic complexity: face images are only filtered by a single-scale Gabor filter pair and the matching is performed between any pairs of face images at hand without involving any training process. Benchmark evaluations show that the proposed approach is totally comparable to and even better than state-of-the-art algorithms, which are typically based on more features extracted from a large set of Gabor faces and/or rely on heavy training processes

    Feature Selection via Sparse Approximation for Face Recognition

    Full text link
    Inspired by biological vision systems, the over-complete local features with huge cardinality are increasingly used for face recognition during the last decades. Accordingly, feature selection has become more and more important and plays a critical role for face data description and recognition. In this paper, we propose a trainable feature selection algorithm based on the regularized frame for face recognition. By enforcing a sparsity penalty term on the minimum squared error (MSE) criterion, we cast the feature selection problem into a combinatorial sparse approximation problem, which can be solved by greedy methods or convex relaxation methods. Moreover, based on the same frame, we propose a sparse Ho-Kashyap (HK) procedure to obtain simultaneously the optimal sparse solution and the corresponding margin vector of the MSE criterion. The proposed methods are used for selecting the most informative Gabor features of face images for recognition and the experimental results on benchmark face databases demonstrate the effectiveness of the proposed methods

    Learning 2D Gabor Filters by Infinite Kernel Learning Regression

    Full text link
    Gabor functions have wide-spread applications in image processing and computer vision. In this paper, we prove that 2D Gabor functions are translation-invariant positive-definite kernels and propose a novel formulation for the problem of image representation with Gabor functions based on infinite kernel learning regression. Using this formulation, we obtain a support vector expansion of an image based on a mixture of Gabor functions. The problem with this representation is that all Gabor functions are present at all support vector pixels. Applying LASSO to this support vector expansion, we obtain a sparse representation in which each Gabor function is positioned at a very small set of pixels. As an application, we introduce a method for learning a dataset-specific set of Gabor filters that can be used subsequently for feature extraction. Our experiments show that use of the learned Gabor filters improves the recognition accuracy of a recently introduced face recognition algorithm

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    Robust Face Recognition with Structural Binary Gradient Patterns

    Full text link
    This paper presents a computationally efficient yet powerful binary framework for robust facial representation based on image gradients. It is termed as structural binary gradient patterns (SBGP). To discover underlying local structures in the gradient domain, we compute image gradients from multiple directions and simplify them into a set of binary strings. The SBGP is derived from certain types of these binary strings that have meaningful local structures and are capable of resembling fundamental textural information. They detect micro orientational edges and possess strong orientation and locality capabilities, thus enabling great discrimination. The SBGP also benefits from the advantages of the gradient domain and exhibits profound robustness against illumination variations. The binary strategy realized by pixel correlations in a small neighborhood substantially simplifies the computational complexity and achieves extremely efficient processing with only 0.0032s in Matlab for a typical face image. Furthermore, the discrimination power of the SBGP can be enhanced on a set of defined orientational image gradient magnitudes, further enforcing locality and orientation. Results of extensive experiments on various benchmark databases illustrate significant improvements of the SBGP based representations over the existing state-of-the-art local descriptors in the terms of discrimination, robustness and complexity. Codes for the SBGP methods will be available at http://www.eee.manchester.ac.uk/research/groups/sisp/software/

    Face Identification with Second-Order Pooling

    Full text link
    Automatic face recognition has received significant performance improvement by developing specialised facial image representations. On the other hand, generic object recognition has rarely been applied to the face recognition. Spatial pyramid pooling of features encoded by an over-complete dictionary has been the key component of many state-of-the-art image classification systems. Inspired by its success, in this work we develop a new face image representation method inspired by the second-order pooling in Carreira et al. [1], which was originally proposed for image segmentation. The proposed method differs from the previous methods in that, we encode the densely extracted local patches by a small-size dictionary; and the facial image signatures are obtained by pooling the second-order statistics of the encoded features. We show the importance of pooling on encoded features, which is bypassed by the original second-order pooling method to avoid the high computational cost. Equipped with a simple linear classifier, the proposed method outperforms the state-of-the-art face identification performance by large margins. For example, on the LFW databases, the proposed method performs better than the previous best by around 13% accuracy.Comment: 9 page

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    Large Margin Low Rank Tensor Analysis

    Full text link
    Other than vector representations, the direct objects of human cognition are generally high-order tensors, such as 2D images and 3D textures. From this fact, two interesting questions naturally arise: How does the human brain represent these tensor perceptions in a "manifold" way, and how can they be recognized on the "manifold"? In this paper, we present a supervised model to learn the intrinsic structure of the tensors embedded in a high dimensional Euclidean space. With the fixed point continuation procedures, our model automatically and jointly discovers the optimal dimensionality and the representations of the low dimensional embeddings. This makes it an effective simulation of the cognitive process of human brain. Furthermore, the generalization of our model based on similarity between the learned low dimensional embeddings can be viewed as counterpart of recognition of human brain. Experiments on applications for object recognition and face recognition demonstrate the superiority of our proposed model over state-of-the-art approaches.Comment: 30 page

    Cross-pose Face Recognition by Canonical Correlation Analysis

    Full text link
    The pose problem is one of the bottlenecks in automatic face recognition. We argue that one of the diffculties in this problem is the severe misalignment in face images or feature vectors with different poses. In this paper, we propose that this problem can be statistically solved or at least mitigated by maximizing the intra-subject across-pose correlations via canonical correlation analysis (CCA). In our method, based on the data set with coupled face images of the same identities and across two different poses, CCA learns simultaneously two linear transforms, each for one pose. In the transformed subspace, the intra-subject correlations between the different poses are maximized, which implies pose-invariance or pose-robustness is achieved. The experimental results show that our approach could considerably improve the recognition performance. And if further enhanced with holistic+local feature representation, the performance could be comparable to the state-of-the-art

    Deep Representation of Facial Geometric and Photometric Attributes for Automatic 3D Facial Expression Recognition

    Full text link
    In this paper, we present a novel approach to automatic 3D Facial Expression Recognition (FER) based on deep representation of facial 3D geometric and 2D photometric attributes. A 3D face is firstly represented by its geometric and photometric attributes, including the geometry map, normal maps, normalized curvature map and texture map. These maps are then fed into a pre-trained deep convolutional neural network to generate the deep representation. Then the facial expression prediction is simplyachieved by training linear SVMs over the deep representation for different maps and fusing these SVM scores. The visualizations show that the deep representation provides a complete and highly discriminative coding scheme for 3D faces. Comprehensive experiments on the BU-3DFE database demonstrate that the proposed deep representation can outperform the widely used hand-crafted descriptors (i.e., LBP, SIFT, HOG, Gabor) and the state-of-art approaches under the same experimental protocols
    • …
    corecore