2 research outputs found

    Investigating Recurrent Neural Network Memory Structures using Neuro-Evolution

    Full text link
    This paper presents a new algorithm, Evolutionary eXploration of Augmenting Memory Models (EXAMM), which is capable of evolving recurrent neural networks (RNNs) using a wide variety of memory structures, such as Delta-RNN, GRU, LSTM, MGU and UGRNN cells. EXAMM evolved RNNs to perform prediction of large-scale, real world time series data from the aviation and power industries. These data sets consist of very long time series (thousands of readings), each with a large number of potentially correlated and dependent parameters. Four different parameters were selected for prediction and EXAMM runs were performed using each memory cell type alone, each cell type with feed forward nodes, and with all possible memory cell types. Evolved RNN performance was measured using repeated k-fold cross validation, resulting in 1210 EXAMM runs which evolved 2,420,000 RNNs in 12,100 CPU hours on a high performance computing cluster. Generalization of the evolved RNNs was examined statistically, providing interesting findings that can help refine the RNN memory cell design as well as inform future neuro-evolution algorithms development.Comment: Some corrections to language, title fi

    Nonlinear Transform Coding

    Full text link
    We review a class of methods that can be collected under the name nonlinear transform coding (NTC), which over the past few years have become competitive with the best linear transform codecs for images, and have superseded them in terms of rate--distortion performance under established perceptual quality metrics such as MS-SSIM. We assess the empirical rate--distortion performance of NTC with the help of simple example sources, for which the optimal performance of a vector quantizer is easier to estimate than with natural data sources. To this end, we introduce a novel variant of entropy-constrained vector quantization. We provide an analysis of various forms of stochastic optimization techniques for NTC models; review architectures of transforms based on artificial neural networks, as well as learned entropy models; and provide a direct comparison of a number of methods to parameterize the rate--distortion trade-off of nonlinear transforms, introducing a new one
    corecore