2,916 research outputs found

    Deep Metric Learning via Facility Location

    Full text link
    Learning the representation and the similarity metric in an end-to-end fashion with deep networks have demonstrated outstanding results for clustering and retrieval. However, these recent approaches still suffer from the performance degradation stemming from the local metric training procedure which is unaware of the global structure of the embedding space. We propose a global metric learning scheme for optimizing the deep metric embedding with the learnable clustering function and the clustering metric (NMI) in a novel structured prediction framework. Our experiments on CUB200-2011, Cars196, and Stanford online products datasets show state of the art performance both on the clustering and retrieval tasks measured in the NMI and Recall@K evaluation metrics.Comment: Submission accepted at CVPR 201

    Geometric deep learning

    Get PDF
    The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas

    Attribute Graph Clustering via Learnable Augmentation

    Full text link
    Contrastive deep graph clustering (CDGC) utilizes contrastive learning to group nodes into different clusters. Better augmentation techniques benefit the quality of the contrastive samples, thus being one of key factors to improve performance. However, the augmentation samples in existing methods are always predefined by human experiences, and agnostic from the downstream task clustering, thus leading to high human resource costs and poor performance. To this end, we propose an Attribute Graph Clustering method via Learnable Augmentation (\textbf{AGCLA}), which introduces learnable augmentors for high-quality and suitable augmented samples for CDGC. Specifically, we design two learnable augmentors for attribute and structure information, respectively. Besides, two refinement matrices, including the high-confidence pseudo-label matrix and the cross-view sample similarity matrix, are generated to improve the reliability of the learned affinity matrix. During the training procedure, we notice that there exist differences between the optimization goals for training learnable augmentors and contrastive learning networks. In other words, we should both guarantee the consistency of the embeddings as well as the diversity of the augmented samples. Thus, an adversarial learning mechanism is designed in our method. Moreover, a two-stage training strategy is leveraged for the high-confidence refinement matrices. Extensive experimental results demonstrate the effectiveness of AGCLA on six benchmark datasets

    DeepEMD: Differentiable Earth Mover's Distance for Few-Shot Learning

    Full text link
    Deep learning has proved to be very effective in learning with a large amount of labelled data. Few-shot learning in contrast attempts to learn with only a few labelled data. In this work, we develop methods for few-shot image classification from a new perspective of optimal matching between image regions. We employ the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations to determine image relevance. The EMD generates the optimal matching flows between structural elements that have the minimum matching cost, which is used to calculate the image distance for classification. To generate the important weights of elements in the EMD formulation, we design a cross-reference mechanism, which can effectively alleviate the adverse impact caused by the cluttered background and large intra-class appearance variations. To handle kk-shot classification, we propose to learn a structured fully connected layer that can directly classify dense image representations with the proposed EMD. Based on the implicit function theorem, the EMD can be inserted as a layer into the network for end-to-end training. Our extensive experiments validate the effectiveness of our algorithm which outperforms state-of-the-art methods by a significant margin on four widely used few-shot classification benchmarks, namely, miniImageNet, tieredImageNet, Fewshot-CIFAR100 (FC100) and Caltech-UCSD Birds-200-2011 (CUB).Comment: Extended version of DeepEMD in CVPR2020 (oral
    • …
    corecore