145 research outputs found

    Learning Joint Spatial-Temporal Transformations for Video Inpainting

    Full text link
    High-quality video inpainting that completes missing regions in video frames is a promising yet challenging task. State-of-the-art approaches adopt attention models to complete a frame by searching missing contents from reference frames, and further complete whole videos frame by frame. However, these approaches can suffer from inconsistent attention results along spatial and temporal dimensions, which often leads to blurriness and temporal artifacts in videos. In this paper, we propose to learn a joint Spatial-Temporal Transformer Network (STTN) for video inpainting. Specifically, we simultaneously fill missing regions in all input frames by self-attention, and propose to optimize STTN by a spatial-temporal adversarial loss. To show the superiority of the proposed model, we conduct both quantitative and qualitative evaluations by using standard stationary masks and more realistic moving object masks. Demo videos are available at https://github.com/researchmm/STTN.Comment: Accepted by ECCV202

    DeepDR: Deep Structure-Aware RGB-D Inpainting for Diminished Reality

    Full text link
    Diminished reality (DR) refers to the removal of real objects from the environment by virtually replacing them with their background. Modern DR frameworks use inpainting to hallucinate unobserved regions. While recent deep learning-based inpainting is promising, the DR use case is complicated by the need to generate coherent structure and 3D geometry (i.e., depth), in particular for advanced applications, such as 3D scene editing. In this paper, we propose DeepDR, a first RGB-D inpainting framework fulfilling all requirements of DR: Plausible image and geometry inpainting with coherent structure, running at real-time frame rates, with minimal temporal artifacts. Our structure-aware generative network allows us to explicitly condition color and depth outputs on the scene semantics, overcoming the difficulty of reconstructing sharp and consistent boundaries in regions with complex backgrounds. Experimental results show that the proposed framework can outperform related work qualitatively and quantitatively.Comment: 11 pages, 8 figures + 13 pages, 10 figures supplementary. Accepted at 3DV 202

    FlowLens: Seeing Beyond the FoV via Flow-guided Clip-Recurrent Transformer

    Full text link
    Limited by hardware cost and system size, camera's Field-of-View (FoV) is not always satisfactory. However, from a spatio-temporal perspective, information beyond the camera's physical FoV is off-the-shelf and can actually be obtained "for free" from the past. In this paper, we propose a novel task termed Beyond-FoV Estimation, aiming to exploit past visual cues and bidirectional break through the physical FoV of a camera. We put forward a FlowLens architecture to expand the FoV by achieving feature propagation explicitly by optical flow and implicitly by a novel clip-recurrent transformer, which has two appealing features: 1) FlowLens comprises a newly proposed Clip-Recurrent Hub with 3D-Decoupled Cross Attention (DDCA) to progressively process global information accumulated in the temporal dimension. 2) A multi-branch Mix Fusion Feed Forward Network (MixF3N) is integrated to enhance the spatially-precise flow of local features. To foster training and evaluation, we establish KITTI360-EX, a dataset for outer- and inner FoV expansion. Extensive experiments on both video inpainting and beyond-FoV estimation tasks show that FlowLens achieves state-of-the-art performance. Code will be made publicly available at https://github.com/MasterHow/FlowLens.Comment: Code will be made publicly available at https://github.com/MasterHow/FlowLen

    Zoom-to-Inpaint: Image Inpainting with High-Frequency Details

    Full text link
    Although deep learning has enabled a huge leap forward in image inpainting, current methods are often unable to synthesize realistic high-frequency details. In this paper, we propose applying super-resolution to coarsely reconstructed outputs, refining them at high resolution, and then downscaling the output to the original resolution. By introducing high-resolution images to the refinement network, our framework is able to reconstruct finer details that are usually smoothed out due to spectral bias - the tendency of neural networks to reconstruct low frequencies better than high frequencies. To assist training the refinement network on large upscaled holes, we propose a progressive learning technique in which the size of the missing regions increases as training progresses. Our zoom-in, refine and zoom-out strategy, combined with high-resolution supervision and progressive learning, constitutes a framework-agnostic approach for enhancing high-frequency details that can be applied to any CNN-based inpainting method. We provide qualitative and quantitative evaluations along with an ablation analysis to show the effectiveness of our approach. This seemingly simple, yet powerful approach, outperforms state-of-the-art inpainting methods
    • …
    corecore