1,246 research outputs found

    Learn to Generate Time Series Conditioned Graphs with Generative Adversarial Nets

    Full text link
    Deep learning based approaches have been utilized to model and generate graphs subjected to different distributions recently. However, they are typically unsupervised learning based and unconditioned generative models or simply conditioned on the graph-level contexts, which are not associated with rich semantic node-level contexts. Differently, in this paper, we are interested in a novel problem named Time Series Conditioned Graph Generation: given an input multivariate time series, we aim to infer a target relation graph modeling the underlying interrelationships between time series with each node corresponding to each time series. For example, we can study the interrelationships between genes in a gene regulatory network of a certain disease conditioned on their gene expression data recorded as time series. To achieve this, we propose a novel Time Series conditioned Graph Generation-Generative Adversarial Networks (TSGG-GAN) to handle challenges of rich node-level context structures conditioning and measuring similarities directly between graphs and time series. Extensive experiments on synthetic and real-word gene regulatory networks datasets demonstrate the effectiveness and generalizability of the proposed TSGG-GAN

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    A Systematic Survey on Deep Generative Models for Graph Generation

    Full text link
    Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to its wide range of applications, generative models for graphs have a rich history, which, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for the graph generation. Firstly, the formal definition of deep generative models for the graph generation as well as preliminary knowledge is provided. Secondly, two taxonomies of deep generative models for unconditional, and conditional graph generation respectively are proposed; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted
    • …
    corecore