5,584 research outputs found

    Reinforcement Learning Scheduler for Vehicle-to-Vehicle Communications Outside Coverage

    Full text link
    Radio resources in vehicle-to-vehicle (V2V) communication can be scheduled either by a centralized scheduler residing in the network (e.g., a base station in case of cellular systems) or a distributed scheduler, where the resources are autonomously selected by the vehicles. The former approach yields a considerably higher resource utilization in case the network coverage is uninterrupted. However, in case of intermittent or out-of-coverage, due to not having input from centralized scheduler, vehicles need to revert to distributed scheduling. Motivated by recent advances in reinforcement learning (RL), we investigate whether a centralized learning scheduler can be taught to efficiently pre-assign the resources to vehicles for out-of-coverage V2V communication. Specifically, we use the actor-critic RL algorithm to train the centralized scheduler to provide non-interfering resources to vehicles before they enter the out-of-coverage area. Our initial results show that a RL-based scheduler can achieve performance as good as or better than the state-of-art distributed scheduler, often outperforming it. Furthermore, the learning process completes within a reasonable time (ranging from a few hundred to a few thousand epochs), thus making the RL-based scheduler a promising solution for V2V communications with intermittent network coverage.Comment: Article published in IEEE VNC 201

    Leading Undergraduate Students to Big Data Generation

    Get PDF
    People are facing a flood of data today. Data are being collected at unprecedented scale in many areas, such as networking, image processing, virtualization, scientific computation, and algorithms. The huge data nowadays are called Big Data. Big data is an all encompassing term for any collection of data sets so large and complex that it becomes difficult to process them using traditional data processing applications. In this article, the authors present a unique way which uses network simulator and tools of image processing to train students abilities to learn, analyze, manipulate, and apply Big Data. Thus they develop students handson abilities on Big Data and their critical thinking abilities. The authors used novel image based rendering algorithm with user intervention to generate realistic 3D virtual world. The learning outcomes are significant
    corecore