152 research outputs found

    Joint Precoding and Array Design for Broadcast in the Internet of Unmanned Aerial Vehicles

    Get PDF
    To promote energy and spectrum efficient communications in multi-antenna channels, broadcast can provide a substantial gain in system throughput. However, the hardware constraints and strong line-of-sight (LoS) limit the implementation and performance of multi-antenna broadcast in the Internet of unmanned aerial vehicles (UAVs). Based on the pseudo-Doppler principle, we propose a joint precoding and antenna array design to reduce the number of radio frequency (RF) chains required by the broadcast and free the LoS path from the inter-stream interference. The reduction of RF chains is realised by designing the precoding matrix that makes at least one of the transmit antennas have null inputs during any broadcast and, moreover, the LoS path is formed to match the obtained precoding matrix through antenna array design at the broadcasting UAV. The algorithms with low computational complexity for optimising this design are developed to minimise the transmit power within the UAV broadcast paradigms. Theoretical formulation and numerical results in the metrics of sum data rate and bit error rate substantiate the validity of our proposed design, specifically in the Internet of UAVs with strong LoS

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in nodeā€“edgeā€“cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    In-band-full-duplex integrated access and backhaul enabled next generation wireless networks

    Get PDF
    In sixth generation (6G) wireless networks, the severe traffic congestion in the microwave frequencies motivates the exploration of the large available bandwidth in the millimetre-wave (mmWave) frequencies to achieve higher network capacity and data rate. Since large-scale antenna arrays and dense base station deployment are required, the hybrid beamforming architecture and the recently proposed integrated access and backhaul (IAB) networks become potential candidates for providing cost and hardware-friendly techniques for 6G wireless networks. In addition, in-band-full-duplex (IBFD) has been recently paid much more research attention since it can make the transmission and reception occur in the same time and frequency band, which nearly doubles the communication spectral efficiency (SE) compared with state-of-the-art half-duplex (HD) systems. Since 6G will explore sensing as its new capability, future wireless networks can go far beyond communications. Motivated by this, the development of integrated sensing and communications (ISAC) systems, where radar and communication systems share the same spectrum resources and hardware, has become one of the major goals in 6G. This PhD thesis focuses on the design and analysis of IBFD-IAB wireless networks in the frequency range 2 (FR2) band (ā‰„ 24.250 GHz) at mmWave frequencies for the potential use in 6G. Firstly, we develop a novel design for the single-cell FR2-IBFD-IAB networks with subarray-based hybrid beamforming, which can enhance the SE and coverage while reducing the latency. The radio frequency (RF) beamformers are obtained via RF codebooks given by a modified matrix-wise Linde-Buzo-Gray (LBG) algorithm. The self-interference (SI) is cancelled in three stages, where the first stage of antenna isolation is assumed to be successfully deployed. The second stage consists of the optical domain-based RF cancellation, where cancellers are connected with the RF chain pairs. The third stage is comprised of the digital cancellation via successive interference cancellation followed by minimum mean-squared error (MSE) baseband receiver. Multiuser interference in the access link is cancelled by zero-forcing at the IAB-node transmitter. The proposed codebook algorithm avoids undesirable low-rank behaviour, while the proposed staged-SI cancellation (SIC) shows satisfactory cancellation performance in the wideband IBFD scenario. However, the system performance can be affected by the hardware impairments (HWI) and RF effective channel estimation errors. Secondly, we study an FR2-IBFD-ISAC-IAB network for vehicle-to-everything communications, where the IAB-node acts as a roadside unit performing sensing and communication simultaneously (i.e., at the same time and frequency band). The SI due to the IBFD operation will be cancelled in the propagation, analogue, and digital domains; only the residual SI (RSI) is reserved for performance analysis. Considering the subarray-based hybrid beamforming structure, including HWI and RF effective SI channel estimation error, the unscented Kalman filter is used for tracking multiple vehicles in the studied scenario. The proposed system shows an enhanced SE compared with the HD system, and the tracking MSEs averaged across all vehicles of each state parameter are close to their posterior CramĆ©r-Rao lower bounds. Thirdly, we analyse the performance of the multi-cell wideband single-hop backhaul FR2-IBFD-IAB networks by using stochastic geometry analysis. We model the wired-connected next generation NodeBs (gNBs) as the MatĆ©rn hard-core point process (MHCPP) to meet the real-world deployment requirement and reduce the cost caused by wired connection in the network. We first derive association probabilities that reflect how likely the typical user-equipment is served by a gNB or an IAB-node based on the maximum long-term averaged biased-received-desired-signal power criteria. Further, by leveraging the composite Gamma-Lognormal distribution, we derive results for the signal to interference plus noise ratio coverage, capacity with outage, and ergodic capacity of the network. In order to assess the impact of noise, we consider the sidelobe gain on inter-cell interference links and the analogue to digital converter quantization noise. Compared with the HD transmission, the designated system shows an enhanced capacity when the SIC operates successfully. We also study how the power bias and density ratio of the IAB-node to gNB, and the hard-core distance can affect system performance. Overall, this thesis aims to contribute to the research efforts of shaping the 6G wireless networks by designing and analysing the FR2-IBFD-IAB inspired networks in the FR2 band at mmWave frequencies that will be potentially used in 6G for both communication only and ISAC scenarios

    D4.2 Intelligent D-Band wireless systems and networks initial designs

    Get PDF
    This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based network intelligence. It presents the work conducted on various aspects of network management to deliver system level, qualitative solutions that leverage diverse machine learning techniques. The different chapters present system level, simulation and algorithmic models based on multi-agent reinforcement learning, deep reinforcement learning, learning automata for complex event forecasting, system level model for proactive handovers and resource allocation, model-driven deep learning-based channel estimation and feedbacks as well as strategies for deployment of machine learning based solutions. In short, the D4.2 provides results on promising AI and ML based methods along with their limitations and potentials that have been investigated in the ARIADNE project

    Modeling and Analysis of Massive Low Earth Orbit Communication Networks

    Get PDF
    Non-terrestrial networks are foreseen as a crucial component for developing 6th generation (6G) of wireless cellular networks by many telecommunication industries. Among non-terrestrial networks, low Earth orbit (LEO) communication satellites have shown a great potential in providing global seamless coverage for remote and under-served regions where conventional terrestrial networks are either not available or not economically justiļ¬able to deploy. In addition, to the date of writing this summary, LEO communication networks have became highly commercialized with many prominent examples, compared to other non-terrestrial networks, e.g., high altitude platforms (HAPs) which are still in prototyping stage. Despite the rapid promotion of LEO constellations, theoretical methodologies to study the performance of such massive networks at large are still missing from the scientiļ¬c literature. While commercial plans must obviously have been simulated before deployment of these constellations, the deterministic and network-speciļ¬c simulations rely on instantaneous positions of satellites and, consequently, are unable to characterize the performance of massive satellite networks in a generic scientiļ¬c form, given the constellation parameters. In order to address this problem, in this thesis, a generic tractable approach is proposed to analyze the LEO communication networks using stochastic geometry as a central tool. Firstly, satellites are modeled as a point process which enables using the mathematics of stochastic geometry to formulate two performance metrics of the network, namely, coverage probability and data rate, in terms of constellation parameters. The derivations are applicable to any given LEO constellation regardless of satellitesā€™ actual locations on orbits. Due to speciļ¬c geometry of satellites, there is an inherent mismatch between the actual distribution of satellites and the point processes that are used to model their locality. Secondly, diļ¬€erent approaches have thus been investigated to eliminate this modeling error and improve the accuracy of the analytical derivations. The results of this research are published in seven original publications which are attached to this summary. In these publications, coverage probability and average achievable data rate of LEO satellite networks are derived for several communication scenarios in both uplink and downlink directions under diļ¬€erent propagation models and user association techniques. Moreover, the analysis was generalized to cover the performance analysis of a multi-altitude constellation which imitates the geometry of some well-known commercial constellations with satellites orbiting on multiple altitude levels. While direct communication between the satellites and ground terminals is the main studied communication scenario in this thesis, the performance of a LEO network as a backhaul for aerial platforms is also addressed and compared with terrestrial backhaul networks. Finally, all analytical derivations, obtained from stochastic modeling of the LEO constellations, are veriļ¬ed through Monte Carlo simulations and compared with actual simulated constellations to ensure their accuracy. Through the numerical results, the performance metrics are evaluated in terms of diļ¬€erent constellation parameters, e.g., altitude, inclination angle, and total number of satellites, which reveals their optimal values that maximize the capacity and/or coverage probability. Therefore, other than performance analysis, several insightful guidelines can be also extracted regarding the design of LEO satellite networks based on the numerical results. Stochastic modeling of a LEO satellite network, which is proposed for the ļ¬rst time ever in this thesis, extends the application of stochastic geometry in wireless communication ļ¬eld from planar two-dimensional (2D) networks to highly heterogeneous three-dimensional (3D) spherical networks. In fact, the results show that stochastic modeling can also be utilized to precisely model the networks with deterministic nodesā€™ locations and speciļ¬c distribution of nodes over the Euclidean space. Thus, the proposed methodology reported herein paves the way for comprehensive analytical understanding and generic performance study of heterogeneous massive networks in the future

    Imaging fascicular organisation in mammalian vagus nerve for selective VNS

    Get PDF
    Nerves contain a large number of nerve fibres, or axons, organised into bundles known as fascicles. Despite the somatic nervous system being well understood, the organisation of the fascicles within the nerves of the autonomic nervous system remains almost completely unknown. The new field of bioelectronics medicine, Electroceuticals, involves the electrical stimulation of nerves to treat diseases instead of administering drugs or performing complex surgical procedures. Of particular interest is the vagus nerve, a prime target for intervention due to its afferent and efferent innervation to the heart, lungs and majority of the visceral organs. Vagus nerve stimulation (VNS) is a promising therapy for treatment of various conditions resistant to standard therapeutics. However, due to the unknown anatomy, the whole nerve is stimulated which leads to unwanted off-target effects. Electrical Impedance Tomography (EIT) is a non-invasive medical imaging technique in which the impedance of a part of the body is inferred from electrode measurements and used to form a tomographic image of that part. Micro-computed tomography (microCT) is an ex vivo method that has the potential to allow for imaging and tracing of fascicles within experimental models and facilitate the development of a fascicular map. Additionally, it could validate the in vivo technique of EIT. The aim of this thesis was to develop and optimise the microCT imaging method for imaging the fascicles within the nerve and to determine the fascicular organisation of the vagus nerve, ultimately allowing for selective VNS. Understanding and imaging the fascicular anatomy of nerves will not only allow for selective VNS and the improvement of its therapeutic efficacy but could also be integrated into the study on all peripheral nerves for peripheral nerve repair, microsurgery and improving the implementation of nerve guidance conduits. Chapter 1 provides an introduction to vagus nerve anatomy and the principles of microCT, neuronal tracing and EIT. Chapter 2 describes the optimisation of microCT for imaging the fascicular anatomy of peripheral nerves in the experimental rat sciatic and pig vagus nerve models, including the development of pre-processing methods and scanning parameters. Cross-validation of this optimised microCT method, neuronal tracing and EIT in the rat sciatic nerve was detailed in Chapter 3. Chapter 4 describes the study with microCT with tracing, EIT and selective stimulation in pigs, a model for human nerves. The microCT tracing approach was then extended into the subdiaphragmatic branches of the vagus nerves, detailed in Chapter 5. The ultimate goal of human vagus nerve tracing was preliminarily performed and described in Chapter 6. Chapter 7 concludes the work and describes future work. Lastly, Appendix 1 (Chapter 8) is a mini review on the application of selective vagus nerve stimulation to treat acute respiratory distress syndrome and Appendix 2 is morphological data corresponding to Chapter 4

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field
    • ā€¦
    corecore