27,695 research outputs found

    Critical parameters in the life cycle inventory of palm oil mill residues composting

    Get PDF
    Palm oil mill's co-products (empty fruit bunch – EFB and palm oil mill effluent – POME) management is a matter of concern in Indonesia. Co-composting is a promising waste management practice that would allow a reduction of environmental impact and a restitution of organic matter to the soil. This study is a part of a Life Cycle Assessment (LCA) project and aims to pinpoint the most environmentally impacting compartments of the palm oil production chain. It deals more specifically with the Life Cycle Inventory of data on the composting process based on site specific data. Data on the recycled biomass, energy demand and yielded compost properties were recorded in an industrial palm oil mill over one year. Due to the local conditions, high nutrient leaching from the compost were recorded and the compost remained very wet and hot (thermophilic phase). The composting process only led to 40% of methane avoidance compared to anaerobic digestion of POME, and the global nutrient recovery efficiency was below 50%. We identified the following critical parameters to increase environmental benefits from composting: i) the POME/FFB ratio from the mill ii) the roofing of the composting platform, iii) the POME/EFB ratio, iv) the turning frequency, v) the recycling of leachates and vi) the process duration and drying period. The nutrient recovery and the doses of compost applied in the field depend on all of those inter-connected parameters. The data presented will be used within LCA models to assess net environmental benefits from various POME and EFB co-composting systems

    Evaluation of the genotoxic and teratogenic potential of a municipal sludge and sludge-amended soil using the amphibian Xenopus laevis and the tobacco: Nicotiana tabacum L. var. xanthi Dulieu

    Get PDF
    The toxic, genotoxic and teratogenicpotential of amunicipal sewage sludge was assessed using the micronucleus assay on the larvae of the amphibianXenopuslaevis and with the tobacco somatic mutation test using the yellow–green xanthiDulieu mutant a1+/a1 a2+/a2. The teratogenicpotential was assessed by means of the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Various doses of the pasty sludge added to a crop soil were tested using the three bioassays. The test systems were performed either directly with sludge or sludge-amendedsoil samples (plant model) or with aqueous extracts (aquatic animal model). Using the tobacco model, we found no mutagenic impact of the soilamended with the sludge, perhaps because the clay-like nature of the soil, with its high adsorption capacity, may have prevented the contaminants from reaching the target. All leachates of amendedsoils produced a significant size reduction in Xenopus embryos. Depending on the soil/sludge ratio, some leachates were found to be genotoxic but were never teratogenic. This battery of in vivo test systems enabled us to estimate the global long-term effects under agricultural conditions with various genetic endpoints on ecologically relevant organisms characteristic of the aquatic and terrestrial compartments

    Sources and modes of action of invasive knotweed allelopathy : the effects of leaf litter and trained soil on the germination and growth of native plants

    Get PDF
    Invasive knotweeds, native to Eastern Asia, are among the most dominant plant invaders of European and North American temperate ecosystems. Recent studies indicate that one cause of this dominance might be allelopathy, but the possible sources and modes of action of this allelopathy are insufficiently understood. Here, we asked whether the invasive knotweed Fallopia × bohemica can exert allelopathic effects on native plants also through its leaf litter, or through persistent soil contaminants, and whether these affect the germination or growth of native plants. In a germination experiment with nine native species neither litter leachate, an aqueous extract of knotweed leaves added to the soil, nor trained soil with a history of Fallopia pre-cultivation suppressed the germination or early growth of natives. A mesocosm study with experimental native communities showed that the presence of F. × bohemica, although not a dominant in these communities, caused significant shifts of life-history strategy in two dominant natives, and that similar effects could be elicited through litter leachates or trained soil alone. However, there were hardly any effects on the biomass of natives. Our study indicates that knotweed allelopathy acts on the growth rather than germination of natives, and that soil contamination through persistent allelochemicals may not be a significant problem in habitat restoration. It also shows that allelopathic effects can sometimes be subtle changes in life-history and allocation patterns of the affected species

    Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests?

    Get PDF
    Several laboratories had tested bioactivity of the materials in commercially available solution DMEM (Dulbecco's Modified Eagle's Medium) that is normally used for cultivation of cell cultures. The objective of this work was to find out whether it is possible to replace TRIS-buffered SBF currently used for bioactivity tests with the non-buffered DMEM solution. To understand the role of the organic part of the DMEM solution in the process of crystallization, we have prepared non-buffered solution simulating only its inorganic part (identified as I-solution). It was found that under static-dynamic test conditions calcite (CaCO3) and the amorphous phase of calcium phosphate (ACP) formed on the surface of the glass-ceramic (45S5 bioactive glass based) scaffold exposed to both solutions. Additionally, halite (NaCl) formed at the beginning of exposure to DMEM. Hydroxyapatite phase was not detected on the surface in either non-buffered solution. Organic components contained in the DMEM solution failed to prevent formation of crystalline phases. The present results indicate that it is not recommendable to use DMEM for bioactivity tests of glass-ceramic materials due to its low concentration of Ca2+ ions, high concentration of HCO 3- ions and the necessity to maintain sterile environment during the test. © 2014 the Partner Organisations

    Long-term evolution of highly alkaline steel slag drainage waters

    Get PDF
    © 2015, Springer International Publishing Switzerland. The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH ( > 10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50–80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible

    A lead isotope perspective on urban development in ancient Naples

    Get PDF
    The influence of a sophisticated water distribution system on urban development in Roman times is tested against the impact of Vesuvius volcanic activity, in particular the great eruption of AD 79, on all of the ancient cities of the Bay of Naples (Neapolis). Written accounts on urbanization outside of Rome are scarce and the archaeological record sketchy, especially during the tumultuous fifth and sixth centuries AD when Neapolis became the dominant city in the region. Here we show that isotopic ratios of lead measured on a well-dated sedimentary sequence from Neapolis’ harbor covering the first six centuries CE have recorded how the AD 79 eruption was followed by a complete overhaul of Neapolis’ water supply network. The Pb isotopic signatures of the sediments further reveal that the previously steady growth of Neapolis’ water distribution system ceased during the collapse of the fifth century AD, although vital repairs to this critical infrastructure were still carried out in the aftermath of invasions and volcanic eruptions

    Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration, using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (MutatoxR and Ames tests)

    Get PDF
    The management of contaminated soils and wastes is a matter of considerable human concern. The present study evaluates the genotoxic potential of aqueous extracts of two soils (leachates) and of bottom ash resulting from municipal solid waste incineration (MSWIBA percolate), using amphibian larvae (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic aromatic hydrocarbons and metals. MSWIBA was predominantly contaminated by metals. Two genotoxic endpoints were analysed in circulating erythrocytes taken from larvae: clastogenic and/or aneugenic effects (micronucleus induction) after 12 days of exposure and DNA-strand-breaking potency (comet assay) after 1 and 12 days of exposure. In addition, in vitro bacterial assays (MutatoxR and Ames tests) were carried out and the results were compared with those of the amphibian test. Physicochemical analyses were also taken into account. Results obtained with the amphibians established the genotoxicity of the aqueous extracts and the comet assay revealed that they were genotoxic from the first day of exposure. The latter test could thus be considered as a genotoxicity-screening tool. Although genotoxicity persisted after 12 days’ exposure, DNA damage decreased overall between days 1 and 12 in the MSWIBA percolate, in contrast to the soil leachates. Bacterial tests detected genotoxicity only for the leachate of soil A (Mutatox). The results confirm the ecotoxicological relevance of the amphibian model and underscore the importance of bioassays, as a complement to physicochemical data, for risk evaluation

    New insights into the supression of plant pathogenic fungus (Phytophthora cinnamomi) by compost leachates

    Get PDF
    Use of compost as a soil conditioner and low-grade fertiliser is gaining popularity worldwide (Epstein, 1997). Compost not only adds plant nutrients to the soil, but also improves physical properties of soil such as buffering capacity, cation exchange capacity and water holding capacity. In addition to these benefits, compost can also suppress plant diseases caused by Phytophthora cinnamomi (Hoitink et al., 1977), Pythium aphanidermatum (Mandelbaum and Hadar, 1990), Rhizoctonia solani and Sclerotium rolfoii (Gorodecki and Hadar, 1990). Irwin et al., (1995) reported that the diseases caused by P. cinnamomi are directly responsible for considerable economic losses in many horticultural, ornamental and forestry industries throughout Australia. Phytophthora spp. continue to be the focus of attention of many researchers due to the diversity of P. cinnamomi-host interactions and their potential economic impact on a wide range of industries. The practise of using methyl bromide and other chemicals for disinfection of soil is widespread (Trill as et al., 2002). However, the use of methyl bromide and other chemicals is phased out in the USA and Europe. The suppression of soil-borne plant fungus by composts produced from tree barks (Spencer et al., 1982) and municipal solid wastes is well documented (Trill as et al., 2002). Composts that suppress plant disease have been extensively described and are used in greenhouse production systems (Lazarovitis et aI, 2001). However, most studies have focused on compo sting different types of materials and their effect on fungal pathogens inhibition rather than compo sting conditions that may produce suppressive composts. An objective of this study was to investigate the role of moisture, aeration and compost maturity in enhancing the inhibition effect of compost on the plant pathogen P. cinnamomi. A further objective was to generate an increased understanding of the mechanism of growth inhibition

    Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++

    Get PDF
    In this paper, we propose a mathematical model to describe the functioning of a bioreactor landfill, that is a waste management facility in which biodegradable waste is used to generate methane. The simulation of a bioreactor landfill is a very complex multiphysics problem in which bacteria catalyze a chemical reaction that starting from organic carbon leads to the production of methane, carbon dioxide and water. The resulting model features a heat equation coupled with a non-linear reaction equation describing the chemical phenomena under analysis and several advection and advection-diffusion equations modeling multiphase flows inside a porous environment representing the biodegradable waste. A framework for the approximation of the model is implemented using Feel++, a C++ open-source library to solve Partial Differential Equations. Some heuristic considerations on the quantitative values of the parameters in the model are discussed and preliminary numerical simulations are presented

    The effect of silane treatment on nanosized carica papaya seed modified pullulan as biocoagulant in wastewater treatment

    Get PDF
    Currently, conventional wastewater treatment process used chemical coagulant such as Aluminium sulphate. However, the residual aluminium in treated wastewater causes toxicity and serious health issues such as Alzheimer’ disease. Thus, in this study the potential of nanosized Carica Papaya (CP) seeds treated by silane coupling agent incorporated to pullulan on wastewater treatment was investigated. The biocoagulant produce prepared at a different composition of CP range from 1% to 9% was used to treat sewage wastewater. The biocoagulant was characterized by particle size analyser, FTIR and FESEM. The treated wastewater was analyzed by jar test in term of turbidity, pH, dissolved oxygen and Total Suspended Solid with biocoagulant dosage at 0.6 g/L. The size of nanosized biocoagulant was obtained at 608.9 nm. Silane treatment provides well dispersion of nanosized Carica Papaya seed powder in the pullulan matrix phase. FTIR analysis shows the presence of O-H, C=O and Si-O-CH3 bond. The highest turbidity reduction observed at the composition of nanosized CP5/P and silane treated nanosized CP5/P up to 93.89% and 93.98% respectively. However, no significant changes observed on turbidity reduction with increasing CP seeds content for both biocoagulant. Further, at these compositions, the TSS reduced up to 20% and 60% respectively. The DO value of wastewater decreased from the initial value and the increased the pH from 6.58 to 6.69 lead to the neutral condition. Therefore, the effectiveness of both untreated and silane treated biocoagulant were further confirmed upon textile wastewater with turbidity reduction achieved up to 7.84% and 14.54 % respectively. Overall, silane treatment enhanced the effectiveness of nanosized CP modified pullulan as biocoagulant
    corecore