2,870,464 research outputs found
The AXIOM software layers
AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft
Nickel layers on indium arsenide
We report here on the preparation and characterization of InAs substrates for in situ deposition of ferromagnetic contacts, a necessary precursor for semiconductor devices based on spin injection. InAs has been grown on InAs(111)A and (100) substrates by molecular-beam epitaxy and then metalized in situ in order to better understand the mechanisms that inhibit spin injection into a semiconductor. Initial x-ray characterization of the samples indicate the presence of nickel arsenides and indium–nickel compounds forming during deposition at temperatures above room temperature. Several temperature ranges have been investigated in order to determine the effect on nickel-arsenide formation. The presence of such compounds at the interface could greatly reduce the spin-injection efficiency and help elucidate previous unsuccessful attempts at measuring spin injection into InAs
Tunneling current between graphene layers
The physical model that allows to calculate the values of the tunneling
current be-tween graphene layers is proposed. The tunneling current according
to the pro-posed model is proportional to the area of tunneling transition. The
calculated value of tunneling conductivity is in qualitative agreement with
experimental data.Comment: 4 page
GaMnAs: layers, wires and dots
Thin layers of GaMnAs ferromagnetic semiconductor grown by molecular beam
epitaxy on GaAs(001) substrates were studied. To improve their magnetic
properties the post-growth annealing procedures were applied, using the surface
passivation layers of amorphous arsenic. This post growth treatment effectively
increases the ferromagnetic-to-paramagnetic phase transition temperature in
GaMnAs, and provides surface-rich MnAs layer which can be used for formation of
low dimensional structures such as superlattices. If the surface rich MnAs
layer consists of MnAs dots, then it is possible to grow Mn-doped GaAs
nanowiresComment: 15 pages, 14 figures. To be published in Proc. XXXVII International
School on the Physics of Semiconducting Compounds "Jaszowiec 2008", June
2008, Polan
- …
