19,366 research outputs found

    Emergence of Object Segmentation in Perturbed Generative Models

    Get PDF
    We introduce a novel framework to build a model that can learn how to segment objects from a collection of images without any human annotation. Our method builds on the observation that the location of object segments can be perturbed locally relative to a given background without affecting the realism of a scene. Our approach is to first train a generative model of a layered scene. The layered representation consists of a background image, a foreground image and the mask of the foreground. A composite image is then obtained by overlaying the masked foreground image onto the background. The generative model is trained in an adversarial fashion against a discriminator, which forces the generative model to produce realistic composite images. To force the generator to learn a representation where the foreground layer corresponds to an object, we perturb the output of the generative model by introducing a random shift of both the foreground image and mask relative to the background. Because the generator is unaware of the shift before computing its output, it must produce layered representations that are realistic for any such random perturbation. Finally, we learn to segment an image by defining an autoencoder consisting of an encoder, which we train, and the pre-trained generator as the decoder, which we freeze. The encoder maps an image to a feature vector, which is fed as input to the generator to give a composite image matching the original input image. Because the generator outputs an explicit layered representation of the scene, the encoder learns to detect and segment objects. We demonstrate this framework on real images of several object categories.Comment: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Spotlight presentatio

    A robust motion estimation and segmentation approach to represent moving images with layers

    Get PDF
    The paper provides a robust representation of moving images based on layers. To that goal, we have designed efficient motion estimation and segmentation techniques by affine model fitting suitable for the construction of layers. Layered representations, originally introduced by Wang and Adelson (see IEEE Transactions on Image Processing, vol.3, no.5, p.625-38, 1994) are important in several applications. In particular they are very appropriate for object tracking, object manipulation and content-based scalability which are among the main functionalities of the future MPEG-4 standard. In addition a variety of examples are provided that give a deep insight into the performance bounds of the representation of moving images using layers.Peer ReviewedPostprint (published version

    Unsupervised Discovery of Parts, Structure, and Dynamics

    Full text link
    Humans easily recognize object parts and their hierarchical structure by watching how they move; they can then predict how each part moves in the future. In this paper, we propose a novel formulation that simultaneously learns a hierarchical, disentangled object representation and a dynamics model for object parts from unlabeled videos. Our Parts, Structure, and Dynamics (PSD) model learns to, first, recognize the object parts via a layered image representation; second, predict hierarchy via a structural descriptor that composes low-level concepts into a hierarchical structure; and third, model the system dynamics by predicting the future. Experiments on multiple real and synthetic datasets demonstrate that our PSD model works well on all three tasks: segmenting object parts, building their hierarchical structure, and capturing their motion distributions.Comment: ICLR 2019. The first two authors contributed equally to this wor

    Cross Modal Distillation for Supervision Transfer

    Full text link
    In this work we propose a technique that transfers supervision between images from different modalities. We use learned representations from a large labeled modality as a supervisory signal for training representations for a new unlabeled paired modality. Our method enables learning of rich representations for unlabeled modalities and can be used as a pre-training procedure for new modalities with limited labeled data. We show experimental results where we transfer supervision from labeled RGB images to unlabeled depth and optical flow images and demonstrate large improvements for both these cross modal supervision transfers. Code, data and pre-trained models are available at https://github.com/s-gupta/fast-rcnn/tree/distillationComment: Updated version (v2) contains additional experiments and result

    Layered Interpretation of Street View Images

    Full text link
    We propose a layered street view model to encode both depth and semantic information on street view images for autonomous driving. Recently, stixels, stix-mantics, and tiered scene labeling methods have been proposed to model street view images. We propose a 4-layer street view model, a compact representation over the recently proposed stix-mantics model. Our layers encode semantic classes like ground, pedestrians, vehicles, buildings, and sky in addition to the depths. The only input to our algorithm is a pair of stereo images. We use a deep neural network to extract the appearance features for semantic classes. We use a simple and an efficient inference algorithm to jointly estimate both semantic classes and layered depth values. Our method outperforms other competing approaches in Daimler urban scene segmentation dataset. Our algorithm is massively parallelizable, allowing a GPU implementation with a processing speed about 9 fps.Comment: The paper will be presented in the 2015 Robotics: Science and Systems Conference (RSS
    • …
    corecore