23 research outputs found

    Layer-compensated Pruning for Resource-constrained Convolutional Neural Networks

    Full text link
    Resource-efficient convolution neural networks enable not only the intelligence on edge devices but also opportunities in system-level optimization such as scheduling. In this work, we aim to improve the performance of resource-constrained filter pruning by merging two sub-problems commonly considered, i.e., (i) how many filters to prune for each layer and (ii) which filters to prune given a per-layer pruning budget, into a global filter ranking problem. Our framework entails a novel algorithm, dubbed layer-compensated pruning, where meta-learning is involved to determine better solutions. We show empirically that the proposed algorithm is superior to prior art in both effectiveness and efficiency. Specifically, we reduce the accuracy gap between the pruned and original networks from 0.9% to 0.7% with 8x reduction in time needed for meta-learning, i.e., from 1 hour down to 7 minutes. To this end, we demonstrate the effectiveness of our algorithm using ResNet and MobileNetV2 networks under CIFAR-10, ImageNet, and Bird-200 datasets.Comment: 11 pages, 8 figures, work in progres

    Hybrid Pruning: Thinner Sparse Networks for Fast Inference on Edge Devices

    Full text link
    We introduce hybrid pruning which combines both coarse-grained channel and fine-grained weight pruning to reduce model size, computation and power demands with no to little loss in accuracy for enabling modern networks deployment on resource-constrained devices, such as always-on security cameras and drones. Additionally, to effectively perform channel pruning, we propose a fast sensitivity test that helps us quickly identify the sensitivity of within and across layers of a network to the output accuracy for target multiplier accumulators (MACs) or accuracy tolerance. Our experiment shows significantly better results on ResNet50 on ImageNet compared to existing work, even with an additional constraint of channels be hardware-friendly number

    Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours

    Full text link
    Can we automatically design a Convolutional Network (ConvNet) with the highest image classification accuracy under the runtime constraint of a mobile device? Neural architecture search (NAS) has revolutionized the design of hardware-efficient ConvNets by automating this process. However, the NAS problem remains challenging due to the combinatorially large design space, causing a significant searching time (at least 200 GPU-hours). To alleviate this complexity, we propose Single-Path NAS, a novel differentiable NAS method for designing hardware-efficient ConvNets in less than 4 hours. Our contributions are as follows: 1. Single-path search space: Compared to previous differentiable NAS methods, Single-Path NAS uses one single-path over-parameterized ConvNet to encode all architectural decisions with shared convolutional kernel parameters, hence drastically decreasing the number of trainable parameters and the search cost down to few epochs. 2. Hardware-efficient ImageNet classification: Single-Path NAS achieves 74.96% top-1 accuracy on ImageNet with 79ms latency on a Pixel 1 phone, which is state-of-the-art accuracy compared to NAS methods with similar constraints (<80ms). 3. NAS efficiency: Single-Path NAS search cost is only 8 epochs (30 TPU-hours), which is up to 5,000x faster compared to prior work. 4. Reproducibility: Unlike all recent mobile-efficient NAS methods which only release pretrained models, we open-source our entire codebase at: https://github.com/dstamoulis/single-path-nas

    Data-Driven Neuron Allocation for Scale Aggregation Networks

    Full text link
    Successful visual recognition networks benefit from aggregating information spanning from a wide range of scales. Previous research has investigated information fusion of connected layers or multiple branches in a block, seeking to strengthen the power of multi-scale representations. Despite their great successes, existing practices often allocate the neurons for each scale manually, and keep the same ratio in all aggregation blocks of an entire network, rendering suboptimal performance. In this paper, we propose to learn the neuron allocation for aggregating multi-scale information in different building blocks of a deep network. The most informative output neurons in each block are preserved while others are discarded, and thus neurons for multiple scales are competitively and adaptively allocated. Our scale aggregation network (ScaleNet) is constructed by repeating a scale aggregation (SA) block that concatenates feature maps at a wide range of scales. Feature maps for each scale are generated by a stack of downsampling, convolution and upsampling operations. The data-driven neuron allocation and SA block achieve strong representational power at the cost of considerably low computational complexity. The proposed ScaleNet, by replacing all 3x3 convolutions in ResNet with our SA blocks, achieves better performance than ResNet and its outstanding variants like ResNeXt and SE-ResNet, in the same computational complexity. On ImageNet classification, ScaleNets absolutely reduce the top-1 error rate of ResNets by 1.12 (101 layers) and 1.82 (50 layers). On COCO object detection, ScaleNets absolutely improve the mmAP with backbone of ResNets by 3.6 (101 layers) and 4.6 (50 layers) on Faster RCNN, respectively. Code and models are released at https://github.com/Eli-YiLi/ScaleNet.Comment: 11 pages

    Meta Filter Pruning to Accelerate Deep Convolutional Neural Networks

    Full text link
    Existing methods usually utilize pre-defined criterions, such as p-norm, to prune unimportant filters. There are two major limitations in these methods. First, the relations of the filters are largely ignored. The filters usually work jointly to make an accurate prediction in a collaborative way. Similar filters will have equivalent effects on the network prediction, and the redundant filters can be further pruned. Second, the pruning criterion remains unchanged during training. As the network updated at each iteration, the filter distribution also changes continuously. The pruning criterions should also be adaptively switched. In this paper, we propose Meta Filter Pruning (MFP) to solve the above problems. First, as a complement to the existing p-norm criterion, we introduce a new pruning criterion considering the filter relation via filter distance. Additionally, we build a meta pruning framework for filter pruning, so that our method could adaptively select the most appropriate pruning criterion as the filter distribution changes. Experiments validate our approach on two image classification benchmarks. Notably, on ILSVRC-2012, our MFP reduces more than 50% FLOPs on ResNet-50 with only 0.44% top-5 accuracy loss.Comment: 10 page

    OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks

    Full text link
    Channel pruning can significantly accelerate and compress deep neural networks. Many channel pruning works utilize structured sparsity regularization to zero out all the weights in some channels and automatically obtain structure-sparse network in training stage. However, these methods apply structured sparsity regularization on each layer separately where the correlations between consecutive layers are omitted. In this paper, we first combine one out-channel in current layer and the corresponding in-channel in next layer as a regularization group, namely out-in-channel. Our proposed Out-In-Channel Sparsity Regularization (OICSR) considers correlations between successive layers to further retain predictive power of the compact network. Training with OICSR thoroughly transfers discriminative features into a fraction of out-in-channels. Correspondingly, OICSR measures channel importance based on statistics computed from two consecutive layers, not individual layer. Finally, a global greedy pruning algorithm is designed to remove redundant out-in-channels in an iterative way. Our method is comprehensively evaluated with various CNN architectures including CifarNet, AlexNet, ResNet, DenseNet and PreActSeNet on CIFAR-10, CIFAR-100 and ImageNet-1K datasets. Notably, on ImageNet-1K, we reduce 37.2% FLOPs on ResNet-50 while outperforming the original model by 0.22% top-1 accuracy.Comment: Accepted to CVPR 2019, the pruned ResNet-50 model has be released at: https://github.com/dsfour/OICS

    Parameterized Structured Pruning for Deep Neural Networks

    Full text link
    As a result of the growing size of Deep Neural Networks (DNNs), the gap to hardware capabilities in terms of memory and compute increases. To effectively compress DNNs, quantization and connection pruning are usually considered. However, unconstrained pruning usually leads to unstructured parallelism, which maps poorly to massively parallel processors, and substantially reduces the efficiency of general-purpose processors. Similar applies to quantization, which often requires dedicated hardware. We propose Parameterized Structured Pruning (PSP), a novel method to dynamically learn the shape of DNNs through structured sparsity. PSP parameterizes structures (e.g. channel- or layer-wise) in a weight tensor and leverages weight decay to learn a clear distinction between important and unimportant structures. As a result, PSP maintains prediction performance, creates a substantial amount of sparsity that is structured and, thus, easy and efficient to map to a variety of massively parallel processors, which are mandatory for utmost compute power and energy efficiency. PSP is experimentally validated on the popular CIFAR10/100 and ILSVRC2012 datasets using ResNet and DenseNet architectures, respectively

    Filter Pruning using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks

    Full text link
    Since the convolutional neural networks are often trained with redundant parameters, it is possible to reduce redundant kernels or filters to obtain a compact network without dropping the classification accuracy. In this paper, we propose a filter pruning method using the hierarchical group sparse regularization. It is shown in our previous work that the hierarchical group sparse regularization is effective in obtaining sparse networks in which filters connected to unnecessary channels are automatically close to zero. After training the convolutional neural network with the hierarchical group sparse regularization, the unnecessary filters are selected based on the increase of the classification loss of the randomly selected training samples to obtain a compact network. It is shown that the proposed method can reduce more than 50% parameters of ResNet for CIFAR-10 with only 0.3% decrease in the accuracy of test samples. Also, 34% parameters of ResNet are reduced for TinyImageNet-200 with higher accuracy than the baseline network.Comment: Accepted to ICPR 202

    New Directions in Distributed Deep Learning: Bringing the Network at Forefront of IoT Design

    Full text link
    In this paper, we first highlight three major challenges to large-scale adoption of deep learning at the edge: (i) Hardware-constrained IoT devices, (ii) Data security and privacy in the IoT era, and (iii) Lack of network-aware deep learning algorithms for distributed inference across multiple IoT devices. We then provide a unified view targeting three research directions that naturally emerge from the above challenges: (1) Federated learning for training deep networks, (2) Data-independent deployment of learning algorithms, and (3) Communication-aware distributed inference. We believe that the above research directions need a network-centric approach to enable the edge intelligence and, therefore, fully exploit the true potential of IoT.Comment: This preprint is for personal use only. The official article will appear in proceedings of Design Automation Conference (DAC), 2020. This work was presented at the DAC 2020 special session on Edge-to-Cloud Neural Networks for Machine Learning Applications in Future IoT System

    Dynamic Sparse Graph for Efficient Deep Learning

    Full text link
    We propose to execute deep neural networks (DNNs) with dynamic and sparse graph (DSG) structure for compressive memory and accelerative execution during both training and inference. The great success of DNNs motivates the pursuing of lightweight models for the deployment onto embedded devices. However, most of the previous studies optimize for inference while neglect training or even complicate it. Training is far more intractable, since (i) the neurons dominate the memory cost rather than the weights in inference; (ii) the dynamic activation makes previous sparse acceleration via one-off optimization on fixed weight invalid; (iii) batch normalization (BN) is critical for maintaining accuracy while its activation reorganization damages the sparsity. To address these issues, DSG activates only a small amount of neurons with high selectivity at each iteration via a dimension-reduction search (DRS) and obtains the BN compatibility via a double-mask selection (DMS). Experiments show significant memory saving (1.7-4.5x) and operation reduction (2.3-4.4x) with little accuracy loss on various benchmarks.Comment: ICLR 201
    corecore