3,388 research outputs found

    A hybrid architecture for the implementation of the Athena neural net model

    Get PDF
    The implementation of an earlier introduced neural net model for pattern classification is considered. Data flow principles are employed in the development of a machine that efficiently implements the model and can be useful for real time classification tasks. Further enhancement with optical computing structures is also considered

    Can Passive Mobile Application Traffic be Identified using Machine Learning Techniques

    Get PDF
    Mobile phone applications (apps) can generate background traffic when the end-user is not actively using the app. If this background traffic could be accurately identified, network operators could de-prioritise this traffic and free up network bandwidth for priority network traffic. The background app traffic should have IP packet features that could be utilised by a machine learning algorithm to identify app-generated (passive) traffic as opposed to user-generated (active) traffic. Previous research in the area of IP traffic classification focused on classifying high level network traffic types originating on a PC device. This research was concerned with classifying low level app traffic originating on mobile phone device. An innovative experiment setup was designed in order to answer the research question. A mobile phone running Android OS was configured to capture app network data. Three specific data trace procedures where then designed to comprehensively capture sample active and passive app traffic data. Feature generation in previous research recommend computing new features based on IP packet data. This research proposes a different approach. Feature generation was enabled by exposing inherent IP packet attributes as opposed to computing new features. Specific evaluation metrics were also designed in order to quantify the accuracy of the machine learning models at classifying active and passive app traffic. Three decision tree models were implemented; C5.0, C&R tree and CHAID tree. Each model was built using a standard implementation and with boosting. The findings indicate that passive app network traffic can be classified with an accuracy up to 84.8% using a CHAID decision tree algorithm with model boosting enabled. The finding also suggested that features derived from the inherent IP packet attributes, such as time frame delta and bytes in flight, had significant predictive value

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    Multiservice QoS-Enabled MAC for Optical Burst Switching

    Get PDF
    The emergence of a broad range of network-driven applications (e.g., multimedia, online gaming) brings in the need for a network environment able to provide multiservice capabilities with diverse quality-of-service (QoS) guarantees. In this paper, a medium access control protocol is proposed to support multiple services and QoS levels in optical burst-switched mesh networks without wavelength conversion. The protocol provides two different access mechanisms, queue-arbitrated and prearbitrated for connectionless and connection-oriented burst transport, respectively. It has been evaluated through extensive simulations and its simplistic form makes it very promising for implementation and deployment. Results indicate that the protocol can clearly provide a relative quality differentiation for connectionless traffic and guarantee null (or negligible, and thus acceptable) burst loss probability for a wide range of network (or offered) load while ensuring low access delay for the higher-priority traffic. Furthermore, in the multiservice scenario mixing connectionless and connection-oriented burst transmissions, three different prearbitrated slot scheduling algorithms are evaluated, each one providing a different performance in terms of connection blocking probability. The overall results demonstrate the suitability of this architecture for future integrated multiservice optical networks
    corecore