6,184 research outputs found

    Lattice-point generating functions for free sums of convex sets

    Full text link
    Let \J and \K be convex sets in Rn\R^{n} whose affine spans intersect at a single rational point in \J \cap \K, and let \J \oplus \K = \conv(\J \cup \K). We give formulas for the generating function {equation*} \sigma_{\cone(\J \oplus \K)}(z_1,..., z_n, z_{n+1}) = \sum_{(m_1,..., m_n) \in t(\J \oplus \K) \cap \Z^{n}} z_1^{m_1}... z_n^{m_n} z_{n+1}^{t} {equation*} of lattice points in all integer dilates of \J \oplus \K in terms of \sigma_{\cone \J} and \sigma_{\cone \K}, under various conditions on \J and \K. This work is motivated by (and recovers) a product formula of B.\ Braun for the Ehrhart series of \P \oplus \Q in the case where ¶\P and \Q are lattice polytopes containing the origin, one of which is reflexive. In particular, we find necessary and sufficient conditions for Braun's formula and its multivariate analogue.Comment: 17 pages, 2 figures, to appear in Journal of Combinatorial Theory Series

    A Product Formula for the Normalized Volume of Free Sums of Lattice Polytopes

    Full text link
    The free sum is a basic geometric operation among convex polytopes. This note focuses on the relationship between the normalized volume of the free sum and that of the summands. In particular, we show that the normalized volume of the free sum of full dimensional polytopes is precisely the product of the normalized volumes of the summands.Comment: Published in the proceedings of 2017 Southern Regional Algebra Conferenc

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x≥0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives

    Unimodality Problems in Ehrhart Theory

    Full text link
    Ehrhart theory is the study of sequences recording the number of integer points in non-negative integral dilates of rational polytopes. For a given lattice polytope, this sequence is encoded in a finite vector called the Ehrhart h∗h^*-vector. Ehrhart h∗h^*-vectors have connections to many areas of mathematics, including commutative algebra and enumerative combinatorics. In this survey we discuss what is known about unimodality for Ehrhart h∗h^*-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al. (eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This version updated October 2017 to correct an error in the original versio
    • …
    corecore