87 research outputs found

    On 3-dimensional lattice walks confined to the positive octant

    Full text link
    Many recent papers deal with the enumeration of 2-dimensional walks with prescribed steps confined to the positive quadrant. The classification is now complete for walks with steps in {0,±1}2\{0, \pm 1\}^2: the generating function is D-finite if and only if a certain group associated with the step set is finite. We explore in this paper the analogous problem for 3-dimensional walks confined to the positive octant. The first difficulty is their number: there are 11074225 non-trivial and non-equivalent step sets in {0,±1}3\{0, \pm 1\}^3 (instead of 79 in the quadrant case). We focus on the 35548 that have at most six steps. We apply to them a combined approach, first experimental and then rigorous. On the experimental side, we try to guess differential equations. We also try to determine if the associated group is finite. The largest finite groups that we find have order 48 -- the larger ones have order at least 200 and we believe them to be infinite. No differential equation has been detected in those cases. On the rigorous side, we apply three main techniques to prove D-finiteness. The algebraic kernel method, applied earlier to quadrant walks, works in many cases. Certain, more challenging, cases turn out to have a special Hadamard structure, which allows us to solve them via a reduction to problems of smaller dimension. Finally, for two special cases, we had to resort to computer algebra proofs. We prove with these techniques all the guessed differential equations. This leaves us with exactly 19 very intriguing step sets for which the group is finite, but the nature of the generating function still unclear.Comment: Final version, to appear in Annals of Combinatorics. 36 page

    Walks in the Quarter Plane with Multiple Steps

    Get PDF
    We extend the classification of nearest neighbour walks in the quarter plane to models in which multiplicities are attached to each direction in the step set. Our study leads to a small number of infinite families that completely characterize all the models whose associated group is D4, D6, or D8. These families cover all the models with multiplicites 0, 1, 2, or 3, which were experimentally found to be D-finite --- with three noteworthy exceptions.Comment: 12 pages, FPSAC 2015 submissio

    Automatic Classification of Restricted Lattice Walks

    Get PDF
    We propose an experimental mathematics approach leading to the computer-driven discovery of various structural properties of general counting functions coming from enumeration of walks

    A family of centered random walks on weight lattices conditioned to stay in Weyl chambers

    Get PDF
    Under a natural asumption on the drift, the law of the simple random walk on the multidimensional first quadrant conditioned to always stay in the first octant was obtained by O'Connell in [O]. It coincides with that of the image of the simple random walk under the multidimensional Pitman transform and can be expressed in terms of specializations of Schur functions. This result has been generalized in [LLP1] and [LLP2] for a large class of random walks on weight lattices defined from representations of Kac-Moody algebras and their conditionings to always stay in Weyl chambers. In these various works, the drift of the considered random walk is always assumed in the interior of the cone. In this paper, we introduce for some zero drift random walks defined from minuscule representations a relevant notion of conditioning to stay in Weyl chambers and we compute their laws. Namely, we consider the conditioning for these walks to stay in these cones until an instant we let tend to infinity. We also prove that the laws so obtained can be recovered by letting the drift tend to zero in the transitions matrices obtained in [LLP1]. We also conjecture our results remain true in the more general case of a drift in the frontier of the Weyl chamber

    Conditioned one-way simple random walk and representation theory

    Get PDF
    We call one-way simple random walk a random walk in the quadrant Z_+^n whose increments belong to the canonical base. In relation with representation theory of Lie algebras and superalgebras, we describe the law of such a random walk conditioned to stay in a closed octant, a semi-open octant or other types of semi-groups. The combinatorial representation theory of these algebras allows us to describe a generalized Pitman transformation which realizes the conditioning on the set of paths of the walk. We pursue here in a direction initiated by O'Connell and his coauthors [13,14,2], and also developed in [12]. Our work relies on crystal bases theory and insertion schemes on tableaux described by Kashiwara and his coauthors in [1] and, very recently, in [5].Comment: 32 page
    • …
    corecore