26,148 research outputs found

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Finite closed coverings of compact quantum spaces

    Full text link
    We show that a projective space P^\infty(Z/2) endowed with the Alexandrov topology is a classifying space for finite closed coverings of compact quantum spaces in the sense that any such a covering is functorially equivalent to a sheaf over this projective space. In technical terms, we prove that the category of finitely supported flabby sheaves of algebras is equivalent to the category of algebras with a finite set of ideals that intersect to zero and generate a distributive lattice. In particular, the Gelfand transform allows us to view finite closed coverings of compact Hausdorff spaces as flabby sheaves of commutative C*-algebras over P^\infty(Z/2).Comment: 26 pages, the Teoplitz quantum projective space removed to another paper. This is the third version which differs from the second one by fine tuning and removal of typo

    The extended permutohedron on a transitive binary relation

    Full text link
    For a given transitive binary relation e on a set E, the transitive closures of open (i.e., co-transitive in e) sets, called the regular closed subsets, form an ortholattice Reg(e), the extended permutohedron on e. This construction, which contains the poset Clop(e) of all clopen sets, is a common generalization of known notions such as the generalized permutohedron on a partially ordered set on the one hand, and the bipartition lattice on a set on the other hand. We obtain a precise description of the completely join-irreducible (resp., completely meet-irreducible) elements of Reg(e) and the arrow relations between them. In particular, we prove that (1) Reg(e) is the Dedekind-MacNeille completion of the poset Clop(e); (2) Every open subset of e is a set-theoretic union of completely join-irreducible clopen subsets of e; (3) Clop(e) is a lattice iiff every regular closed subset of e is clopen, iff e contains no "square" configuration, iff Reg(e)=Clop(e); (4) If e is finite, then Reg(e) is pseudocomplemented iff it is semidistributive, iff it is a bounded homomorphic image of a free lattice, iff e is a disjoint sum of antisymmetric transitive relations and two-element full relations. We illustrate the strength of our results by proving that, for n greater than or equal to 3, the congruence lattice of the lattice Bip(n) of all bipartitions of an n-element set is obtained by adding a new top element to a Boolean lattice with n2^{n-1} atoms. We also determine the factors of the minimal subdirect decomposition of Bip(n).Comment: 25 page
    • …
    corecore