47,732 research outputs found

    Deployment of spatial attention towards locations in memory representations: an EEG study

    Get PDF
    Recalling information from visual short-term memory (VSTM) involves the same neural mechanisms as attending to an actually perceived scene. In particular, retrieval from VSTM has been associated with orienting of visual attention towards a location within a spatially-organized memory representation. However, an open question concerns whether spatial attention is also recruited during VSTM retrieval even when performing the task does not require access to spatial coordinates of items in the memorized scene. The present study combined a visual search task with a modified, delayed central probe protocol, together with EEG analysis, to answer this question. We found a temporal contralateral negativity (TCN) elicited by a centrally presented go-signal which was spatially uninformative and featurally unrelated to the search target and informed participants only about a response key that they had to press to indicate a prepared target-present vs. -absent decision. This lateralization during VSTM retrieval (TCN) provides strong evidence of a shift of attention towards the target location in the memory representation, which occurred despite the fact that the present task required no spatial (or featural) information from the search to be encoded, maintained, and retrieved to produce the correct response and that the go-signal did not itself specify any information relating to the location and defining feature of the target

    The right visual field advantage and the optimal viewing position effect: On the relation between foveal and parafoveal word recognition

    Get PDF
    Recent developments on the optimal viewing position (OVP) effect suggest that it may be caused by the same factors that underlie the right visual field advantage in word recognition. This raises the question of the relationship between foveal and parafoveal word recognition. Three experiments are reported in which participants identified tachistoscopically presented words that were presented randomly in foveal and parafoveal vision. The results show that both the OVP effect and the right visual field advantage for word recognition are part of a larger extended OVP curve that has the shape of a Gaussian distribution with the mode shifted to the left of the center of the stimulus word. The shift of the distribution is a function of word length, but not of presentation duration; it is also slightly moderated by the information value of word beginning and word end

    Neural Basis of Motivation Lateralizes with Motor Control

    Get PDF
    According to decades of research on affective motivation in the human brain, approach motivational states are subserved by the left hemisphere and avoidance states by the right hemisphere. Here we show that hemispheric specialization for motivation reverses with handedness. This covariation provides initial support for the Sword and Shield Hypothesis, according to which hemispheric laterality of affective motivation is causally linked to motor control for the dominant and non-dominant hands

    Interhemispheric transfer and the processing of foveally presented stimuli

    Get PDF
    A review of the literature shows that the LVF and the RVF do not overlap. This means that foveal representations of words are effectively split and that interhemispheric communication is needed to recognise centrally presented words

    EXPLAINING LATERALITY

    Get PDF
    Working with multi-species allometric relations and drawing on mammalian theorist Denenberg’s works, I provide an explanatory theory of the mammalian dual-brain as no prior account has

    Is implicit motor imagery a reliable strategy for a brain computer interface?

    Get PDF
    Explicit motor imagery (eMI) is a widely used brain computer interface (BCI) paradigm, but not everybody can accomplish this task. Here we propose a BCI based on implicit motor imagery (iMI). We compared classification accuracy between eMI and iMI of hands. Fifteen able bodied people were asked to judge the laterality of hand images presented on a computer screen in a lateral or medial orientation. This judgement task is known to require mental rotation of a person’s own hands which in turn is thought to involve iMI. The subjects were also asked to perform eMI of the hands. Their electroencephalography (EEG) was recorded. Linear classifiers were designed based on common spatial patterns. For discrimination between left and right hand the classifier achieved maximum of 81 ± 8% accuracy for eMI and 83 ± 3% for iMI. These results show that iMI can be used to achieve similar classification accuracy as eMI. Additional classification was performed between iMI in medial and lateral orientations of a single hand; the classifier achieved 81 ± 7% for the left and 78 ± 7% for the right hand which indicate distinctive spatial patterns of cortical activity for iMI of a single hand in different directions. These results suggest that a special brain computer interface based on iMI may be constructed, for people who cannot perform explicit imagination, for rehabilitation of movement or for treatment of bodily spatial neglect
    corecore