2 research outputs found

    Latent Multi-Criteria Ratings for Recommendations

    Full text link
    Multi-criteria recommender systems have been increasingly valuable for helping consumers identify the most relevant items based on different dimensions of user experiences. However, previously proposed multi-criteria models did not take into account latent embeddings generated from user reviews, which capture latent semantic relations between users and items. To address these concerns, we utilize variational autoencoders to map user reviews into latent embeddings, which are subsequently compressed into low-dimensional discrete vectors. The resulting compressed vectors constitute latent multi-criteria ratings that we use for the recommendation purposes via standard multi-criteria recommendation methods. We show that the proposed latent multi-criteria rating approach outperforms several baselines significantly and consistently across different datasets and performance evaluation measures.Comment: Accepted to RecSys19

    Latent Unexpected Recommendations

    Full text link
    Unexpected recommender system constitutes an important tool to tackle the problem of filter bubbles and user boredom, which aims at providing unexpected and satisfying recommendations to target users at the same time. Previous unexpected recommendation methods only focus on the straightforward relations between current recommendations and user expectations by modeling unexpectedness in the feature space, thus resulting in the loss of accuracy measures in order to improve unexpectedness performance. Contrast to these prior models, we propose to model unexpectedness in the latent space of user and item embeddings, which allows to capture hidden and complex relations between new recommendations and historic purchases. In addition, we develop a novel Latent Closure (LC) method to construct hybrid utility function and provide unexpected recommendations based on the proposed model. Extensive experiments on three real-world datasets illustrate superiority of our proposed approach over the state-of-the-art unexpected recommendation models, which leads to significant increase in unexpectedness measure without sacrificing any accuracy metric under all experimental settings in this paper.Comment: Accepted at ACM TIS
    corecore