388 research outputs found

    Latent Space Autoregression for Novelty Detection

    Get PDF
    Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts

    A Neural Network for Image Anomaly Detection with Deep Pyramidal Representations and Dynamic Routing

    Get PDF
    Image anomaly detection is an application-driven problem where the aim is to identify novel samples, which differ significantly from the normal ones. We here propose Pyramidal Image Anomaly DEtector (PIADE), a deep reconstruction-based pyramidal approach, in which image features are extracted at different scale levels to better catch the peculiarities that could help to discriminate between normal and anomalous data. The features are dynamically routed to a reconstruction layer and anomalies can be identified by comparing the input image with its reconstruction. Unlike similar approaches, the comparison is done by using structural similarity and perceptual loss rather than trivial pixel-by-pixel comparison. The proposed method performed at par or better than the state-of-the-art methods when tested on publicly available datasets such as CIFAR10, COIL-100 and MVTec

    Comparative Evaluation of VAEs, VAE-GANs and AAEs for Anomaly Detection in Network Intrusion Data

    Get PDF
    With cyberattacks growing in frequency and sophistication, effective anomaly detection is critical for securing networks and systems. This study provides a comparative evaluation of deep generative models for detecting anomalies in network intrusion data. The key objective is to determine the most accurate model architecture. Variational autoencoders (VAEs), VAE-GANs, and adversarial autoencoders (AAEs) are tested on the NSL-KDD dataset containing normal traffic and different attack types. Results show that AAEs significantly outperform VAEs and VAE-GANs, achieving AUC scores up to 0.96 and F1 scores of 0.76 on novel attacks. The adversarial regularization of AAEs enables superior generalization capabilities compared to standard VAEs. VAE-GANs exhibit better accuracy than VAEs, demonstrating the benefits of adversarial training. However, VAE-GANs have higher computational requirements. The findings provide strong evidence that AAEs are the most effective deep anomaly detection technique for intrusion detection systems. This study delivers novel insights into optimizing deep learning architectures for cyber defense. The comparative evaluation methodology and results will aid researchers and practitioners in selecting appropriate models for operational network security
    • …
    corecore