20 research outputs found

    Improving the Performance of Online Neural Transducer Models

    Full text link
    Having a sequence-to-sequence model which can operate in an online fashion is important for streaming applications such as Voice Search. Neural transducer is a streaming sequence-to-sequence model, but has shown a significant degradation in performance compared to non-streaming models such as Listen, Attend and Spell (LAS). In this paper, we present various improvements to NT. Specifically, we look at increasing the window over which NT computes attention, mainly by looking backwards in time so the model still remains online. In addition, we explore initializing a NT model from a LAS-trained model so that it is guided with a better alignment. Finally, we explore including stronger language models such as using wordpiece models, and applying an external LM during the beam search. On a Voice Search task, we find with these improvements we can get NT to match the performance of LAS

    State-of-the-art Speech Recognition With Sequence-to-Sequence Models

    Full text link
    Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In previous work, we have shown that such architectures are comparable to state-of-theart ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We also introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12, 500 hour voice search task, we find that the proposed changes improve the WER from 9.2% to 5.6%, while the best conventional system achieves 6.7%; on a dictation task our model achieves a WER of 4.1% compared to 5% for the conventional system.Comment: ICASSP camera-ready versio

    Building competitive direct acoustics-to-word models for English conversational speech recognition

    Full text link
    Direct acoustics-to-word (A2W) models in the end-to-end paradigm have received increasing attention compared to conventional sub-word based automatic speech recognition models using phones, characters, or context-dependent hidden Markov model states. This is because A2W models recognize words from speech without any decoder, pronunciation lexicon, or externally-trained language model, making training and decoding with such models simple. Prior work has shown that A2W models require orders of magnitude more training data in order to perform comparably to conventional models. Our work also showed this accuracy gap when using the English Switchboard-Fisher data set. This paper describes a recipe to train an A2W model that closes this gap and is at-par with state-of-the-art sub-word based models. We achieve a word error rate of 8.8%/13.9% on the Hub5-2000 Switchboard/CallHome test sets without any decoder or language model. We find that model initialization, training data order, and regularization have the most impact on the A2W model performance. Next, we present a joint word-character A2W model that learns to first spell the word and then recognize it. This model provides a rich output to the user instead of simple word hypotheses, making it especially useful in the case of words unseen or rarely-seen during training.Comment: Submitted to IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 201
    corecore